bccp: an R package for life-testing and survival analysis
暂无分享,去创建一个
[1] Hon Keung Tony Ng,et al. Statistical estimation for the parameters of Weibull distribution based on progressively type-I interval censored sample , 2009 .
[2] N. Balakrishnan,et al. Progressive Censoring: Theory, Methods, and Applications , 2000 .
[3] Francisco Cribari-Neto,et al. Improved statistical inference for the two-parameter Birnbaum-Saunders distribution , 2007, Comput. Stat. Data Anal..
[4] Ryan T. Godwin,et al. Bias -corrected Maximum Likelihood Estimation of the Parameters of the Generalized Pareto Distribution , 2010 .
[5] N. Balakrishnan,et al. Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples , 2003, IEEE Trans. Reliab..
[6] Wentao Wang,et al. Bias-Corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution , 2017, Commun. Stat. Simul. Comput..
[7] Sudhir Paul,et al. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. , 2005, Biometrics.
[8] N. Balakrishnan,et al. Inference for the extreme value distribution under progressive Type-II censoring , 2004 .
[9] Gauss M. Cordeiro,et al. Bias correction in ARMA models , 1994 .
[10] D. Giles,et al. Bias Reduction for the Maximum Likelihood Estimator of the Parameters of the Generalized Rayleigh Family of Distributions , 2014 .
[11] Narayanaswamy Balakrishnan,et al. Progressive censoring methodology: an appraisal , 2007 .
[12] Saralees Nadarajah,et al. mle.tools: An R Package for Maximum Likelihood Bias Correction , 2017, R J..
[13] M. Teimouri. Bias corrected maximum likelihood estimators under progressive type-I interval censoring scheme , 2020, Commun. Stat. Simul. Comput..
[14] D. Giles,et al. Bias-reduced maximum likelihood estimation of the zero-inflated Poisson distribution , 2016 .
[15] Narayanaswamy Balakrishnan,et al. Planning life tests with progressively Type-I interval censored data from the lognormal distribution , 2009 .
[16] S. Nadarajah,et al. Bias corrected MLEs under progressive type-II censoring scheme , 2016 .
[17] Debasis Kundu,et al. Bayesian Inference and Life Testing Plan for the Weibull Distribution in Presence of Progressive Censoring , 2008, Technometrics.
[18] Francisco Cribari-Neto,et al. Bias-corrected maximum likelihood estimation for the beta distribution , 1997 .
[19] N. Balakrishnan,et al. Reliability sampling plans for lognormal distribution, based on progressively-censored samples , 2000, IEEE Trans. Reliab..
[20] Sanku Dey,et al. Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution , 2019, Commun. Stat. Simul. Comput..
[21] E. Gehan,et al. Plasmacytic myeloma. A study of the relationship of survival to various clinical manifestations and anomalous protein type in 112 patients. , 1967, The American journal of medicine.
[22] Debasis Kundu,et al. On Progressively Type-II Censored Two-parameter Rayleigh Distribution , 2016, Commun. Stat. Simul. Comput..
[23] Arjun K. Gupta,et al. Estimation Methods for the Gompertz–Makeham Distribution Under Progressively Type-I Interval Censoring Scheme , 2012 .
[24] Min Wang,et al. Improved parameter estimation of the log-logistic distribution with applications , 2018, Comput. Stat..
[25] Ryan T. Godwin,et al. On the Bias of the Maximum Likelihood Estimator for the Two-Parameter Lomax Distribution , 2013 .
[26] M. H. Quenouille. Approximate tests of correlation in time-series 3 , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] D. Chen,et al. Lower Confidence Limits on the Generalized Exponential Distribution Percentiles Under Progressive Type-I Interval Censoring , 2013, Commun. Stat. Simul. Comput..
[28] Ryan T. Godwin,et al. Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution , 2013 .
[29] Sukhdev Singh,et al. Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring , 2018 .
[30] Saralees Nadarajah,et al. Bias corrected MLEs for the Weibull distribution based on records , 2013 .
[31] Narayanaswamy Balakrishnan,et al. A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .
[32] Narayanaswamy Balakrishnan,et al. Inference for the Type II generalized logistic distribution under progressive Type II censoring , 2007 .
[33] Francisco Cribari-Neto,et al. Nearly Unbiased Maximum Likelihood Estimation for the Beta Distribution , 2002 .
[34] Tzong-Ru Tsai,et al. Parameter Estimations for Generalized Rayleigh Distribution under Progressively Type-I Interval Censored Data , 2011 .
[35] Yuhlong Lio,et al. Parameter estimations for generalized exponential distribution under progressive type-I interval censoring , 2010, Comput. Stat. Data Anal..
[36] Veeresh Gadag,et al. Progressively Censored Reliability Sampling Plans for the Weibull Distribution , 2000, Technometrics.
[37] N. Balakrishnan,et al. A General Purpose Approximate Goodness-of-Fit Test for Progressively Type-II Censored Data , 2012, IEEE Transactions on Reliability.
[38] Bias-corrected estimators of scalar skew normal , 2017 .
[39] Yu Guo,et al. Statistical Inference for the Information Entropy of the Log-Logistic Distribution under Progressive Type-I Interval Censoring Schemes , 2018, Symmetry.
[40] Sukhdev Singh,et al. On estimating the parameters of the Burr XII model under progressive type-I interval censoring , 2017 .
[41] Rita Aggarwala,et al. PROGRESSIVE INTERVAL CENSORING: SOME MATHEMATICAL RESULTS WITH APPLICATIONS TO INFERENCE , 2001 .
[42] D. Giles. Bias Reduction for the Maximum Likelihood Estimators of the Parameters in the Half-Logistic Distribution , 2012 .
[43] María-Dolores Jiménez-Gamero,et al. Bias Correction in the Type I Generalized Logistic Distribution , 2011, Commun. Stat. Simul. Comput..
[44] D. Cox,et al. A General Definition of Residuals , 1968 .
[45] Debasis Kundu,et al. Inference and optimal censoring schemes for progressively censored Birnbaum–Saunders distribution , 2013 .
[46] Peng Xiuyun,et al. Parameter estimations with gamma distribution based on progressive type- I interval censoring , 2011, 2011 IEEE International Conference on Computer Science and Automation Engineering.
[47] Rong Liu,et al. Bias-corrected estimators of scalar skew normal , 2017, Commun. Stat. Simul. Comput..
[48] L. LioY.,et al. Parameter Estimations for Generalized RayleighDistribution under Progressively Type-I IntervalCensored Data , 2011 .
[49] Sanku Dey,et al. Bias-corrected maximum likelihood estimation of the parameters of the generalized half-normal distribution , 2018 .
[50] Artur J. Lemonte. Improved point estimation for the Kumaraswamy distribution , 2011 .
[51] Narayanaswamy Balakrishnan,et al. Exact linear inference and prediction for exponential distributions based on general progressively type-ii censored samples , 2002 .