Matrix factorizations, triadic matrices, and modified cholesky factorizations for optimization

This thesis focuses on the Cholesky-related factorizations of symmetric matrices and their application to Newton-type optimization. A matrix is called triadic if it has at most two nonzero off-diagonal elements in each column. Tridiagonal matrices are a special case of these. We prove that the triadic structure is preserved in the Cholesky-related factorizations. We analyze its numerical stability and also present our perturbation analysis. Newton-like methods solve nonlinear programming problems whose objective function and constraint functions are twice continuously differentiable. At each iteration, a search direction is computed by solving a linear symmetric system Ax = b. When A is not positive definite, the computed search direction may not be a descent direction. Modified Newton methods add a perturbation E to A, so that A+E is positive definite, where E is symmetric positive semidefinite. We study the modified Newton methods in the literature, and develop other stable and efficient algorithms. One of them exploits the merits of triadic structure. We apply our modified Newton methods to the Euclidean distance matrix completion problem (EDMCP). Given n points in Euclidean space, the Euclidean distance matrix (EDM) is the real symmetric matrix with ( i, j) entry being the square of the Euclidean distance between ith and jth points. Given a partial Euclidean distance matrix (i.e., some entries are not specified), the EDMCP is to find a EDM that includes the specified entries. We tackle the EDMCP by transforming it into a global optimization problem and applying modified Newton methods. We also develop a dimensional relaxation method for global minimization and test it on sample problems including protein structure prediction.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Dianne P. O'Leary,et al.  Data-flow algorithms for parallel matrix computation , 1985, CACM.

[3]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[4]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[5]  Marcos Raydan,et al.  Molecular conformations from distance matrices , 1993, J. Comput. Chem..

[6]  Charles R. Johnson,et al.  The Euclidian Distance Matrix Completion Problem , 1995, SIAM J. Matrix Anal. Appl..

[7]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[8]  Kurt Wüthrich,et al.  NMR studies of structure and function of biological macromolecules (Nobel Lecture)* , 2003, Journal of biomolecular NMR.

[9]  M. SIAMJ. STABILITY OF THE DIAGONAL PIVOTING METHOD WITH PARTIAL PIVOTING , 1995 .

[10]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[11]  Danny C. Sorensen,et al.  On the use of directions of negative curvature in a modified newton method , 1979, Math. Program..

[12]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[13]  Michael W. Trosset,et al.  Distance Matrix Completion by Numerical Optimization , 2000, Comput. Optim. Appl..

[14]  Anders Forsgren,et al.  Computing Modified Newton Directions Using a Partial Cholesky Factorization , 1995, SIAM J. Sci. Comput..

[15]  Gordon M. Crippen,et al.  Conformational analysis by energy embedding , 1982 .

[16]  Gene H. Golub,et al.  Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..

[17]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[18]  G. Miller On the Solution of a System of Linear Equations , 1910 .

[19]  H A Scheraga,et al.  An approach to the multiple-minima problem by relaxing dimensionality. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Bunch A Note on the Stable Decomposition of Skew-Symmetric Matrices , 1982 .

[21]  David S. Watkins,et al.  Cholesky-like Factorizations of Skew-Symmetric Matrices , 2000 .

[22]  Dianne P. O'Leary,et al.  Stable Factorizations of Symmetric Tridiagonal and Triadic Matrices , 2006, SIAM J. Matrix Anal. Appl..

[23]  Clémentin Tayou Djamégni,et al.  Synthesis Of Space-Time Optimal Systolic Algorithms For The Cholesky Factorization , 2002, Discret. Math. Theor. Comput. Sci..

[24]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[25]  Ramani Duraiswami,et al.  Automatic position calibration of multiple microphones , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[26]  R. Mathar The best Euclidian fit to a given distance matrix in prescribed dimensions , 1985 .

[27]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[28]  John G. Lewis,et al.  Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..

[29]  L. Foster The growth factor and efficiency of Gaussian elimination with rook pivoting , 1997 .

[30]  J. Bunch Partial Pivoting Strategies for Symmetric Matrices , 1972 .

[31]  Jorge J. Moré,et al.  Global Continuation for Distance Geometry Problems , 1995, SIAM J. Optim..

[32]  S. Nash Newton-Type Minimization via the Lanczos Method , 1984 .

[33]  Henry Wolkowicz,et al.  On the Embeddability of Weighted Graphs in Euclidean Spaces , 2007 .

[34]  Rolf Backofen,et al.  COMPUTATIONAL MOLECULAR BIOLOGY: AN INTRODUCTION , 2000 .

[35]  J. O. Aasen On the reduction of a symmetric matrix to tridiagonal form , 1971 .

[36]  Joseph R. Shinnerl,et al.  On the Stability of Cholesky Factorization for Symmetric Quasidefinite Systems , 1996, SIAM J. Matrix Anal. Appl..

[37]  B. Green THE ORTHOGONAL APPROXIMATION OF AN OBLIQUE STRUCTURE IN FACTOR ANALYSIS , 1952 .

[38]  Renato D. C. Monteiro,et al.  Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .

[39]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[40]  Nicholas J. Higham,et al.  Stability of block LDLT factorization of a symmetric tridiagonal matrix , 1999 .

[41]  James Demmel,et al.  Stability of block LU factorization , 1992, Numer. Linear Algebra Appl..

[42]  S. H. Cheng,et al.  A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..

[43]  N. Higham Analysis of the Cholesky Decomposition of a Semi-definite Matrix , 1990 .

[44]  James Hardy Wilkinson,et al.  Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.

[45]  Rainer Lienhart,et al.  Position calibration of microphones and loudspeakers in distributed computing platforms , 2005, IEEE Transactions on Speech and Audio Processing.

[46]  Elizabeth Eskow,et al.  A Revised Modified Cholesky Factorization Algorithm , 1999, SIAM J. Optim..

[47]  Haw-ren Fang Backward Error Analysis of Factorization Algorithms for Symmetric and Symmetric Triadic Matrices , 2006 .

[48]  Timothy F. Havel An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. , 1991, Progress in biophysics and molecular biology.

[49]  John C. Haws Preconditioning KKT Systems , 2002 .

[50]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[51]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[52]  Ivan Slapničar,et al.  Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices , 1998 .

[53]  Philip E. Gill,et al.  Newton-type methods for unconstrained and linearly constrained optimization , 1974, Math. Program..

[54]  Philip E. Gill,et al.  Practical optimization , 1981 .

[55]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[56]  W. Glunt,et al.  An alternating projection algorithm for computing the nearest euclidean distance matrix , 1990 .

[57]  G. Stewart,et al.  Assignment and scheduling in parallel matrix factorization , 1986 .

[58]  J. Bunch Analysis of the Diagonal Pivoting Method , 1971 .

[59]  Richard H. Byrd,et al.  A Stochastic/Perturbation Global Optimization Algorithm for Distance Geometry Problems , 1997, J. Glob. Optim..

[60]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[61]  James R. Bunch,et al.  A pivoting strategy for symmetric tridiagonal matrices , 2005, Numer. Linear Algebra Appl..

[62]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[63]  Abdo Y. Alfakih,et al.  On the uniqueness of Euclidean distance matrix completions , 2003 .