Matrix factorizations, triadic matrices, and modified cholesky factorizations for optimization
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Dianne P. O'Leary,et al. Data-flow algorithms for parallel matrix computation , 1985, CACM.
[3] J. Bunch,et al. Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .
[4] S. Nash,et al. Linear and Nonlinear Programming , 1987 .
[5] Marcos Raydan,et al. Molecular conformations from distance matrices , 1993, J. Comput. Chem..
[6] Charles R. Johnson,et al. The Euclidian Distance Matrix Completion Problem , 1995, SIAM J. Matrix Anal. Appl..
[7] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[8] Kurt Wüthrich,et al. NMR studies of structure and function of biological macromolecules (Nobel Lecture)* , 2003, Journal of biomolecular NMR.
[9] M. SIAMJ.. STABILITY OF THE DIAGONAL PIVOTING METHOD WITH PARTIAL PIVOTING , 1995 .
[10] Bruce Hendrickson,et al. The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..
[11] Danny C. Sorensen,et al. On the use of directions of negative curvature in a modified newton method , 1979, Math. Program..
[12] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[13] Michael W. Trosset,et al. Distance Matrix Completion by Numerical Optimization , 2000, Comput. Optim. Appl..
[14] Anders Forsgren,et al. Computing Modified Newton Directions Using a Partial Cholesky Factorization , 1995, SIAM J. Sci. Comput..
[15] Gordon M. Crippen,et al. Conformational analysis by energy embedding , 1982 .
[16] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[17] A. Householder,et al. Discussion of a set of points in terms of their mutual distances , 1938 .
[18] G. Miller. On the Solution of a System of Linear Equations , 1910 .
[19] H A Scheraga,et al. An approach to the multiple-minima problem by relaxing dimensionality. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[20] J. Bunch. A Note on the Stable Decomposition of Skew-Symmetric Matrices , 1982 .
[21] David S. Watkins,et al. Cholesky-like Factorizations of Skew-Symmetric Matrices , 2000 .
[22] Dianne P. O'Leary,et al. Stable Factorizations of Symmetric Tridiagonal and Triadic Matrices , 2006, SIAM J. Matrix Anal. Appl..
[23] Clémentin Tayou Djamégni,et al. Synthesis Of Space-Time Optimal Systolic Algorithms For The Cholesky Factorization , 2002, Discret. Math. Theor. Comput. Sci..
[24] Shang-Hua Teng,et al. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.
[25] Ramani Duraiswami,et al. Automatic position calibration of multiple microphones , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[26] R. Mathar. The best Euclidian fit to a given distance matrix in prescribed dimensions , 1985 .
[27] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[28] John G. Lewis,et al. Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..
[29] L. Foster. The growth factor and efficiency of Gaussian elimination with rook pivoting , 1997 .
[30] J. Bunch. Partial Pivoting Strategies for Symmetric Matrices , 1972 .
[31] Jorge J. Moré,et al. Global Continuation for Distance Geometry Problems , 1995, SIAM J. Optim..
[32] S. Nash. Newton-Type Minimization via the Lanczos Method , 1984 .
[33] Henry Wolkowicz,et al. On the Embeddability of Weighted Graphs in Euclidean Spaces , 2007 .
[34] Rolf Backofen,et al. COMPUTATIONAL MOLECULAR BIOLOGY: AN INTRODUCTION , 2000 .
[35] J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form , 1971 .
[36] Joseph R. Shinnerl,et al. On the Stability of Cholesky Factorization for Symmetric Quasidefinite Systems , 1996, SIAM J. Matrix Anal. Appl..
[37] B. Green. THE ORTHOGONAL APPROXIMATION OF AN OBLIQUE STRUCTURE IN FACTOR ANALYSIS , 1952 .
[38] Renato D. C. Monteiro,et al. Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .
[39] J. Gower. Properties of Euclidean and non-Euclidean distance matrices , 1985 .
[40] Nicholas J. Higham,et al. Stability of block LDLT factorization of a symmetric tridiagonal matrix , 1999 .
[41] James Demmel,et al. Stability of block LU factorization , 1992, Numer. Linear Algebra Appl..
[42] S. H. Cheng,et al. A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..
[43] N. Higham. Analysis of the Cholesky Decomposition of a Semi-definite Matrix , 1990 .
[44] James Hardy Wilkinson,et al. Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.
[45] Rainer Lienhart,et al. Position calibration of microphones and loudspeakers in distributed computing platforms , 2005, IEEE Transactions on Speech and Audio Processing.
[46] Elizabeth Eskow,et al. A Revised Modified Cholesky Factorization Algorithm , 1999, SIAM J. Optim..
[47] Haw-ren Fang. Backward Error Analysis of Factorization Algorithms for Symmetric and Symmetric Triadic Matrices , 2006 .
[48] Timothy F. Havel. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. , 1991, Progress in biophysics and molecular biology.
[49] John C. Haws. Preconditioning KKT Systems , 2002 .
[50] Henry Wolkowicz,et al. Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..
[51] P. Schönemann,et al. A generalized solution of the orthogonal procrustes problem , 1966 .
[52] Ivan Slapničar,et al. Componentwise Analysis of Direct Factorization of Real Symmetric and Hermitian Matrices , 1998 .
[53] Philip E. Gill,et al. Newton-type methods for unconstrained and linearly constrained optimization , 1974, Math. Program..
[54] Philip E. Gill,et al. Practical optimization , 1981 .
[55] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[56] W. Glunt,et al. An alternating projection algorithm for computing the nearest euclidean distance matrix , 1990 .
[57] G. Stewart,et al. Assignment and scheduling in parallel matrix factorization , 1986 .
[58] J. Bunch. Analysis of the Diagonal Pivoting Method , 1971 .
[59] Richard H. Byrd,et al. A Stochastic/Perturbation Global Optimization Algorithm for Distance Geometry Problems , 1997, J. Glob. Optim..
[60] Elizabeth Eskow,et al. A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..
[61] James R. Bunch,et al. A pivoting strategy for symmetric tridiagonal matrices , 2005, Numer. Linear Algebra Appl..
[62] T. N. Bhat,et al. The Protein Data Bank , 2000, Nucleic Acids Res..
[63] Abdo Y. Alfakih,et al. On the uniqueness of Euclidean distance matrix completions , 2003 .