Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs

Many NP-complete problems on planar graphs are ''fixed-parameter tractable:'' Recent theoretical work provided tree decomposition-based fixed-parameter algorithms exactly solving various parameterized problems on planar graphs, among others VERTEX COVER, in time O(c^kn). Here, c is some constant depending on the graph problem to be solved, n is the number of graph vertices, and k is the problem parameter (for VERTEX COVER this is the size of the vertex cover). In this paper, we present an experimental study for such tree decomposition-based algorithms focusing on VERTEX COVER. We demonstrate that the tree decomposition-based approach provides a valuable way of exactly solving VERTEX COVER on planar graphs. Doing so, we also demonstrate the impressive power of the so-called Nemhauser/Trotter theorem which provides a VERTEX COVER-specific, extremely useful data reduction through polynomial time preprocessing. Altogether, this underpins the practical importance of the underlying theory.

[1]  Samir Khuller,et al.  Algorithms column: the vertex cover problem , 2002, SIGA.

[2]  Bengt Aspvall,et al.  Memory Requirements for Table Computations in Partial \sl k -Tree Algorithms , 2000, Algorithmica.

[3]  Laura A. Sanchis,et al.  Test Case Construction for the Vertex Cover Problem , 1992, Computational Support for Discrete Mathematics.

[4]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[5]  Pierluigi Crescenzi,et al.  How to find the best approximation results , 1998, SIGA.

[6]  Fedor V. Fomin,et al.  Tree decompositions with small cost , 2002, Discret. Appl. Math..

[7]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[8]  Michael R. Fellows,et al.  Parameterized Complexity: The Main Ideas and Some Research Frontiers , 2009, ISAAC.

[9]  Dieter Kratsch,et al.  On treewidth approximations , 2001, Electron. Notes Discret. Math..

[10]  Rolf Niedermeier,et al.  Faster exact algorithms for hard problems: A parameterized point of view , 2001, Discret. Math..

[11]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[12]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[13]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[14]  Illya V. Hicks,et al.  Planar Branch Decompositions , 2000 .

[15]  Ulrike Stege,et al.  Solving large FPT problems on coarse-grained parallel machines , 2003, J. Comput. Syst. Sci..

[16]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2001, J. Algorithms.

[17]  Hans L. Bodlaender,et al.  Treewidth: Algorithmic Techniques and Results , 1997, MFCS.

[18]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[19]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[20]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[21]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[22]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[23]  Illya V. Hicks,et al.  Planar Branch Decompositions I: The Ratcatcher , 2005, INFORMS J. Comput..

[24]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[25]  Bengt Aspvall,et al.  Memory Requirements for Table Computations in Partial k-tree Algorithms , 1998, SWAT.

[26]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[27]  V. Kann,et al.  How to find the best approximation results – a follow-up to Garey and Johnson ∗ , 1998 .

[28]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[29]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[30]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[31]  Reuven Bar-Yehuda,et al.  A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem , 1983, WG.

[32]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[33]  Laura A. Sanchis,et al.  Generating Hard and Diverse Test Sets for NP-hard Graph Problems , 1995, Discret. Appl. Math..

[34]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[35]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[36]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[37]  Samir Khuller,et al.  Algorithms column , 2001, SIGA.

[38]  Eugene L. Lawler,et al.  Linear-Time Computation of Optimal Subgraphs of Decomposable Graphs , 1987, J. Algorithms.

[39]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.