A Generalized Version of the Tilting Theorem

It is well known that tilting modules are of particular importance in the general theory of modules. One of the roles of a tilting module R ω is that it provides a connection between the categories of modules over R and S = End( R ω). This connection is described in the Tilting Theorem. In this article, we get a generalized version of the Tilting Theorem for a Wakamatsu tilting module R ω.

[1]  Idun Reiten,et al.  Homological and Homotopical Aspects of Torsion Theories , 2007 .

[2]  Zhaoyong Huang Generalized tilting modules with finite injective dimension , 2006, math/0602572.

[3]  Jiaqun Wei,et al.  Equivalences and the tilting theory , 2005 .

[4]  Takayoshi Wakamatsu Tilting modules and Auslander's Gorenstein property , 2004 .

[5]  R. Colby,et al.  Equivalence and Duality for Module Categories with Tilting and Cotilting for Rings , 2004 .

[6]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[7]  C. Menini,et al.  Static modules and equivalences , 2000 .

[8]  D. Happel,et al.  Complements and the generalized Nakayama conjecture , 1998 .

[9]  Ø. Solberg,et al.  Relative homology and representation theory 1 , 1993 .

[10]  Ø. Solberg,et al.  Relative homology and representation theory II: Relative Cotilting theory , 1993 .

[11]  Takayoshi Wakamatsu Stable equivalence for self-injective algebras and a generalization of tilting modules , 1990 .

[12]  S. Nauman Static modules and stable Clifford theory , 1990 .

[13]  Riccardo Colpi Some remarks on equivalences between categories of modules , 1990 .

[14]  R. Colby,et al.  Tilting, cotilting, and serially tilted rings , 1990 .

[15]  Takayoshi Wakamatsu On modules with trivial self-extensions , 1988 .

[16]  H. Tachikawa,et al.  Tilting functors and stable equivalences for selfinjective algebras , 1987 .

[17]  Y. Miyashita Tilting modules of finite projective dimension , 1986 .

[18]  K. Nishida On tilted algebras , 1983 .

[19]  M. C. R. Butler,et al.  Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors , 1980 .

[20]  S. E. Dickson A torsion theory for Abelian categories , 1966 .