Genetic dysregulation of an endothelial Ras signaling network in vein of Galen malformations

To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (p=1.22×10-5), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a “second-hit” allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.

[1]  P. Rakic,et al.  Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus , 2022, Nature Neuroscience.

[2]  D. Kerins,et al.  Pulmonary arterial hypertension in hereditary hemorrhagic telangiectasia associated with ACVRL1 mutation: a case report , 2022, Journal of Medical Case Reports.

[3]  T. Krings,et al.  Cerebral neurovascular embryology, anatomic variations, and congenital brain arteriovenous lesions , 2022, Journal of NeuroInterventional Surgery.

[4]  M. Lawton,et al.  A single-cell atlas of the normal and malformed human brain vasculature , 2022, Science.

[5]  P. King,et al.  Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells , 2022, JCI insight.

[6]  N. Matsumoto,et al.  Mutational and clinical spectrum of Japanese patients with hereditary hemorrhagic telangiectasia , 2021, BMC medical genomics.

[7]  A. Nouet,et al.  Somatic PIK3CA Mutations in Sporadic Cerebral Cavernous Malformations. , 2021, The New England journal of medicine.

[8]  Amber N. Stratman,et al.  DIAPH1 Variants in Non-East Asian Patients With Sporadic Moyamoya Disease. , 2021, JAMA neurology.

[9]  Hao Li,et al.  Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation , 2021, American journal of human genetics.

[10]  J. Useche,et al.  Spontaneous thrombosis of a vein of Galen malformation associated with acute sinusitis: a case report , 2021, Child's Nervous System.

[11]  M. Salarzaei,et al.  KRAS/BRAF mutations in brain arteriovenous malformations: A systematic review and meta-analysis , 2021, Interventional neuroradiology : journal of peritherapeutic neuroradiology, surgical procedures and related neurosciences.

[12]  Nadezhda T. Doncheva,et al.  The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets , 2020, Nucleic Acids Res..

[13]  A. Reiss,et al.  PTPN11 Mutations in the Ras-MAPK Signaling Pathway Affect Human White Matter Microstructure. , 2020, Cerebral cortex.

[14]  Edward R. Smith,et al.  Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus , 2020, Nature Medicine.

[15]  Daniela C. Zarnescu,et al.  Mutations disrupting neuritogenesis genes confer risk for cerebral palsy , 2020, Nature Genetics.

[16]  Xing-Ming Zhao,et al.  STAB: a spatio-temporal cell atlas of the human brain , 2020, Nucleic Acids Res..

[17]  J. Soucy,et al.  Prenatal pleural effusions and chylothorax: An unusual presentation for CM‐AVM syndrome due to RASA1 , 2020, American journal of medical genetics. Part A.

[18]  S. Pannier,et al.  Parkes‐Weber syndrome related to RASA1 mosaic mutation , 2020, Clinical genetics.

[19]  Steven D Chang,et al.  Evidence for endothelial‐to‐mesenchymal transition in human brain arteriovenous malformations , 2020, Clinical and translational medicine.

[20]  Francijna E. van den Hil,et al.  Generation and genetic repair of 2 iPSC clones from a patient bearing a heterozygous c.1120del18 mutation in the ACVRL1 gene leading to Hereditary Hemorrhagic Telangiectasia (HHT) type 2. , 2020, Stem cell research.

[21]  T. Krings,et al.  Factors Contributing to Major Neurological Complications From Vein of Galen Malformation Embolization. , 2020, JAMA neurology.

[22]  Linlin Wei,et al.  Effect of acupuncture on neurovascular units after cerebral infarction in rats through PI3K/AKT signaling pathway. , 2020, Clinical hemorheology and microcirculation.

[23]  J. Jani,et al.  An ACVRL1 gene mutation presenting as vein of Galen malformation at prenatal diagnosis , 2020, American journal of medical genetics. Part A.

[24]  P. Lapinski,et al.  RASA1-driven cellular export of collagen IV is required for the development of lymphovenous and venous valves in mice , 2020, Development.

[25]  S. P. Oh,et al.  Recent Advances in Basic Research for Brain Arteriovenous Malformation , 2019, International journal of molecular sciences.

[26]  Y. Takeishi,et al.  Pulmonary Hypertension and Hereditary Hemorrhagic Telangiectasia Related to an ACVRL1 Mutation , 2019, Internal medicine.

[27]  Edward R. Smith,et al.  The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy , 2019, Genetics in Medicine.

[28]  P. Lapinski,et al.  RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. , 2019, The Journal of clinical investigation.

[29]  Brian V Lien,et al.  Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations , 2019, Neurochemistry International.

[30]  M. Esposito The Impact of PI3-kinase/RAS Pathway Cooperating Mutations in the Evolution of KMT2A-rearranged Leukemia , 2019, HemaSphere.

[31]  Sheng-Chih Jin,et al.  EphrinB2-EphB4-RASA1 Signaling in Human Cerebrovascular Development and Disease. , 2019, Trends in molecular medicine.

[32]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.

[33]  Edward R. Smith,et al.  Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation , 2019, Neuron.

[34]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[35]  Stephan J Sanders,et al.  Integrative functional genomic analysis of human brain development and neuropsychiatric risks , 2018, Science.

[36]  Fergus Robertson,et al.  Cross‐sectional study of a United Kingdom cohort of neonatal vein of galen malformation , 2018, Annals of neurology.

[37]  Edward R. Smith,et al.  De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus , 2018, Neuron.

[38]  A. Berenstein,et al.  Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation , 2018, European Journal of Human Genetics.

[39]  Maximilian Haeussler,et al.  CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens , 2018, Nucleic Acids Res..

[40]  Cynthia J. Grondin,et al.  Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation , 2018, Brain : a journal of neurology.

[41]  Julie C. Sapp,et al.  Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy , 2018, The Journal of clinical investigation.

[42]  Koji Ando,et al.  A molecular atlas of cell types and zonation in the brain vasculature , 2018, Nature.

[43]  Mark W. Youngblood,et al.  Human genetics and molecular mechanisms of vein of Galen malformation. , 2018, Journal of neurosurgery. Pediatrics.

[44]  T. Krings,et al.  Endovascular Treatment of Vein of Galen Malformations: A Systematic Review and Meta-Analysis , 2017, American Journal of Neuroradiology.

[45]  Yufeng Shen,et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands , 2017, Nature Genetics.

[46]  Ying Cheng,et al.  Current Development Status of MEK Inhibitors , 2017, Molecules.

[47]  W. Chung,et al.  Germline Loss-of-Function Mutations in EPHB4 Cause a Second Form of Capillary Malformation-Arteriovenous Malformation (CM-AVM2) Deregulating RAS-MAPK Signaling , 2017, Circulation.

[48]  V. Vorselaars,et al.  Pulmonary Hypertension in a Large Cohort with Hereditary Hemorrhagic Telangiectasia , 2017, Respiration.

[49]  Frank McCormick,et al.  RAS Proteins and Their Regulators in Human Disease , 2017, Cell.

[50]  M. Daly,et al.  Regional missense constraint improves variant deleteriousness prediction , 2017, bioRxiv.

[51]  E. Roé,et al.  Sturge-Weber Syndrome: A Review. , 2017, Actas dermo-sifiliograficas.

[52]  Jeffrey D. Mandell,et al.  De Novo Coding Variants Are Strongly Associated with Tourette Disorder , 2017, Neuron.

[53]  D. Nickerson,et al.  Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension , 2016, Clinical genetics.

[54]  Hongyu Zhao,et al.  Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles , 2016, eLife.

[55]  A. Hoischen,et al.  EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis , 2016, The Journal of clinical investigation.

[56]  M. Andersen,et al.  JP–HHT phenotype in Danish patients with SMAD4 mutations , 2016, Clinical genetics.

[57]  K. D. Kariyappa,et al.  Spontaneous thrombosis of vein of Galen malformation , 2016, Journal of pediatric neurosciences.

[58]  P. Bayrak-Toydemir,et al.  RASA1 somatic mutation and variable expressivity in capillary malformation/arteriovenous malformation (CM/AVM) syndrome , 2016, American journal of medical genetics. Part A.

[59]  B. Zlokovic,et al.  Pericytes of the neurovascular unit: key functions and signaling pathways , 2016, Nature Neuroscience.

[60]  Lin He,et al.  Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes* , 2016, The Journal of Biological Chemistry.

[61]  C. McCulloch,et al.  Genome-wide association study of sporadic brain arteriovenous malformations , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[62]  Jong-In Park,et al.  MEK1/2 Inhibitors: Molecular Activity and Resistance Mechanisms. , 2015, Seminars in oncology.

[63]  P. Valet,et al.  SHP2 sails from physiology to pathology. , 2015, European journal of medical genetics.

[64]  M. Daly,et al.  Interpreting de novo Variation in Human Disease Using denovolyzeR , 2015, Current protocols in human genetics.

[65]  Wei Chen,et al.  Sequence analysis A Bayesian framework for de novo mutation calling in parents-offspring trios , 2015 .

[66]  Kali T. Witherspoon,et al.  Excess of rare, inherited truncating mutations in autism , 2015, Nature Genetics.

[67]  R. Gibbs,et al.  Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. , 2015, Human molecular genetics.

[68]  S. Mane,et al.  Exome Sequencing Links Mutations in PARN and RTEL1 with Familial Pulmonary Fibrosis and Telomere Shortening , 2015, Nature Genetics.

[69]  Joshua D. Wythe,et al.  The molecular regulation of arteriovenous specification and maintenance , 2015, Developmental dynamics : an official publication of the American Association of Anatomists.

[70]  A. Harris,et al.  A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis , 2015, Angiogenesis.

[71]  S. Mane,et al.  Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors , 2014, Neuron.

[72]  J. Roach,et al.  Mutations in NOTCH1 cause Adams-Oliver syndrome. , 2014, American journal of human genetics.

[73]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[74]  R. Jaenisch,et al.  Generating genetically modified mice using CRISPR/Cas-mediated genome engineering , 2014, Nature Protocols.

[75]  Zhongbin Chen,et al.  Radiosurgery inhibition of the Notch signaling pathway in a rat model of arteriovenous malformations. , 2014, Journal of neurosurgery.

[76]  C. McCulloch,et al.  Common variants on 9p21.3 are associated with brain arteriovenous malformations with accompanying arterial aneurysms , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[77]  Heng Li,et al.  Toward better understanding of artifacts in variant calling from high-coverage samples , 2014, Bioinform..

[78]  Yang Li,et al.  Notch1 and 4 Signaling Responds to an Increasing Vascular Wall Shear Stress in a Rat Model of Arteriovenous Malformations , 2014, BioMed research international.

[79]  W. Chung,et al.  RASA1 Mutations and Associated Phenotypes in 68 Families with Capillary Malformation–Arteriovenous Malformation , 2013, Human mutation.

[80]  Y. Furutani,et al.  ACVRL1 gene variant in a patient with vein of Galen aneurysmal malformation , 2013, Journal of Pediatric Genetics.

[81]  K. Jin,et al.  Notch4 is activated in endothelial and smooth muscle cells in human brain arteriovenous malformations , 2013, Journal of cellular and molecular medicine.

[82]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[83]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[84]  P. Lapinski,et al.  Nonredundant Functions for Ras GTPase-Activating Proteins in Tissue Homeostasis , 2013, Science Signaling.

[85]  Y. Ville,et al.  Hidden mortality of prenatally diagnosed vein of Galen aneurysmal malformation: retrospective study and review of the literature , 2012, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[86]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[87]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[88]  R. Rocha,et al.  Moyamoya vascular pattern in Alagille syndrome. , 2012, Pediatric neurology.

[89]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[90]  Gianni Cesareni,et al.  Counteracting Effects Operating on Src Homology 2 Domain-containing Protein-tyrosine Phosphatase 2 (SHP2) Function Drive Selection of the Recurrent Y62D and Y63C Substitutions in Noonan Syndrome*♦ , 2012, The Journal of Biological Chemistry.

[91]  Zhan Xiao,et al.  EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner , 2012, Cancer biology & therapy.

[92]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[93]  B. Neel,et al.  Noonan syndrome-causing SHP2 mutants inhibit insulin-like growth factor 1 release via growth hormone-induced ERK hyperactivation, which contributes to short stature , 2012, Proceedings of the National Academy of Sciences.

[94]  E. Sevick-Muraca,et al.  RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. , 2012, The Journal of clinical investigation.

[95]  R. Matsuoka,et al.  Vein of Galen Aneurysmal Malformation Associated With an Endoglin Gene Mutation , 2011, Pediatrics.

[96]  S. Gazal,et al.  Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. , 2011, American journal of human genetics.

[97]  Murim Choi,et al.  Recessive LAMC3 mutations cause malformations of occipital cortical development , 2011, Nature Genetics.

[98]  D. Berg,et al.  Analysis of ACTA2 in European Moyamoya disease patients. , 2011, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[99]  C. Lord,et al.  The Simons Simplex Collection: A Resource for Identification of Autism Genetic Risk Factors , 2010, Neuron.

[100]  G. Lesca,et al.  Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. , 2010, Blood.

[101]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[102]  Stephan J Sanders,et al.  Whole exome sequencing identifies recessive WDR62 mutations in severe brain malformations , 2010, Nature.

[103]  Ayellet V. Segrè,et al.  Hundreds of variants clustered in genomic loci and biological pathways affect human height , 2010, Nature.

[104]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[105]  R. Adams,et al.  Axon guidance molecules in vascular patterning. , 2010, Cold Spring Harbor perspectives in biology.

[106]  A. Barberis,et al.  Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis , 2010, Nature.

[107]  J. Gault,et al.  CEREBRAL CAVERNOUS MALFORMATIONS: SOMATIC MUTATIONS IN VASCULAR ENDOTHELIAL CELLS , 2009, Neurosurgery.

[108]  U. Felbor,et al.  A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells , 2008, Human molecular genetics.

[109]  J. Mulliken,et al.  Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast‐flow vascular anomalies are caused by RASA1 mutations , 2008, Human mutation.

[110]  R. Braren,et al.  Cell-autonomous requirement for β1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice , 2008, Development.

[111]  D. Bercovich,et al.  RASA1 mutations may cause hereditary capillary malformations without arteriovenous malformations , 2008, The British journal of dermatology.

[112]  P. Lapinski,et al.  Generation of mice with a conditional allele of the p120 Ras GTPase‐activating protein , 2007, Genesis.

[113]  M. Vikkula,et al.  Genetic causes of vascular malformations. , 2007, Human molecular genetics.

[114]  C. Haslett,et al.  Mammalian NOTCH-1 Activates β1 Integrins via the Small GTPase R-Ras* , 2007, Journal of Biological Chemistry.

[115]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[116]  P. Byers,et al.  Aneurysm syndromes caused by mutations in the TGF-beta receptor. , 2006, The New England journal of medicine.

[117]  T. Pawson,et al.  A change in conformational dynamics underlies the activation of Eph receptor tyrosine kinases , 2006, The EMBO journal.

[118]  S. Mundlos,et al.  A novel R486Q mutation in BMPR1B resulting in either a brachydactyly type C/symphalangism-like phenotype or brachydactyly type A2 , 2006, European Journal of Human Genetics.

[119]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[120]  Wolfram Kress,et al.  A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2 , 2005, Nature Genetics.

[121]  D. Srivastava,et al.  Mutations in NOTCH1 cause aortic valve disease , 2005, Nature.

[122]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[123]  E. Conti,et al.  Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. , 2005, Current opinion in cell biology.

[124]  J. Salles,et al.  A Novel Role for Gab1 and SHP2 in Epidermal Growth Factor-induced Ras Activation* , 2005, Journal of Biological Chemistry.

[125]  R. Trembath,et al.  Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia , 2003, Journal of medical genetics.

[126]  Miikka Vikkula,et al.  Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. , 2003, American journal of human genetics.

[127]  S. Mundlos,et al.  Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[128]  R. Gibbs,et al.  PTPN11 Mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13 , 2002, Human mutation.

[129]  W. Hahn,et al.  Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells , 2002, Nature Medicine.

[130]  T. Ogata,et al.  PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. , 2002, The Journal of clinical endocrinology and metabolism.

[131]  G. Yancopoulos,et al.  EphB ligand, ephrinB2, suppresses the VEGF‐ and angiopoietin‐1‐induced Ras/mitogen‐activated protein kinase pathway in venous endothelial cells , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[132]  J. Mulliken,et al.  Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). , 2002, American journal of human genetics.

[133]  K. Tsuchida,et al.  The rasGAP‐binding protein, Dok‐1, mediates activin signaling via serine/threonine kinase receptors , 2002, The EMBO journal.

[134]  G. Mathern,et al.  Vascular Genomics of the Human Brain , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[135]  T. Pawson,et al.  Phosphorylation of Tyrosine Residues in the Kinase Domain and Juxtamembrane Region Regulates the Biological and Catalytic Activities of Eph Receptors , 2000, Molecular and Cellular Biology.

[136]  N. Pece-Barbara,et al.  Analysis of ALK-1 and endoglin in newborns from families with hereditary hemorrhagic telangiectasia type 2. , 2000, Human molecular genetics.

[137]  D. Anderson,et al.  Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. , 1999, Molecular cell.

[138]  F. Diella,et al.  Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. , 1999, Genes & development.

[139]  N. Silverman,et al.  Congenital cardiac anomalies with vein of Galen malformations in infants , 1998, Archives of disease in childhood.

[140]  David J. Anderson,et al.  Molecular Distinction and Angiogenic Interaction between Embryonic Arteries and Veins Revealed by ephrin-B2 and Its Receptor Eph-B4 , 1998, Cell.

[141]  L. Shulman,et al.  Amniocentesis Performed at 14 Weeks' Gestation or Earlier: Comparison With First‐Trimester Transabdominal Chorionic Villus Sampling , 1994, Obstetrics and gynecology.

[142]  N. Kagetsu,et al.  Angiographic findings in two cases of aneurysmal malformation of vein of Galen prior to spontaneous thrombosis: therapeutic implications. , 1992, AJNR. American journal of neuroradiology.

[143]  G. A. Martin,et al.  Molecular cloning of two types of GAP complementary DNA from human placenta. , 1988, Science.

[144]  D. Long,et al.  Giant arteriovenous malformations of infancy and childhood. , 1974, Journal of neurosurgery.

[145]  F. Sabin Preliminary note on the differentiation of angioblasts and the method by which they produce blood‐vessels, blood‐plasma and red blood‐cells as seen in the living chick , 1917 .

[146]  P. Lapinski,et al.  Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation. , 2018, European journal of medical genetics.

[147]  Andreas Ritter,et al.  Manipulating The Mouse Embryo A Laboratory Manual , 2016 .

[148]  C. Lawrence New frontiers for zebrafish management. , 2016, Methods in cell biology.

[149]  Lu Ma,et al.  RNF213 polymorphism and Moyamoya disease: A systematic review and meta-analysis. , 2013, Neurology India.

[150]  E. Ahn,et al.  Vein of Galen malformations: epidemiology, clinical presentations, management. , 2012, Neurosurgery clinics of North America.

[151]  C. Lawrence Advances in zebrafish husbandry and management. , 2011, Methods in cell biology.

[152]  S. Blacklow,et al.  Mechanistic insights into Notch receptor signaling from structural and biochemical studies. , 2010, Current topics in developmental biology.

[153]  M. Furutani,et al.  Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. , 2008, Circulation journal : official journal of the Japanese Circulation Society.

[154]  L. Pawlikowska,et al.  Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. , 2008, Acta neurochirurgica. Supplement.

[155]  A. Eichmann,et al.  Vascular development: from precursor cells to branched arterial and venous networks. , 2005, The International journal of developmental biology.

[156]  J. Hald,et al.  Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation , 2004, Neuroradiology.

[157]  A. Özdemir,et al.  Spontaneous thrombosis of a vein of Galen aneurysmal malformation: possible effects of contrast media , 2000, European Radiology.

[158]  K. Miyazono,et al.  Serine/threonine kinase receptors. , 1994, Progress in growth factor research.

[159]  B. Hogan,et al.  Manipulating the mouse embryo: A laboratory manual , 1986 .