Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format.

[1]  WHEN DARWIN,et al.  The Origin of Life , 2019, Rethinking Evolution.

[2]  Pascale Ehrenfreund,et al.  Carbon molecules in space: from astrochemistry to astrobiology. , 2006, Faraday discussions.

[3]  G Horneck,et al.  The biological effectiveness of HZE-particles of cosmic radiation studied in the Apollo 16 and 17 Biostack experiments. , 1975, Acta astronautica.

[4]  W. Nicholson,et al.  The O/OREOS mission: first science data from the Space Environment Survivability of Living Organisms (SESLO) payload. , 2011, Astrobiology.

[5]  N. Evans,et al.  THE SPITZER ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS , 2011, 1107.5825.

[6]  E. Dartois,et al.  UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line , 2013 .

[7]  W. McClintock,et al.  SORCE solar UV irradiance results , 2006 .

[8]  UVolution, a photochemistry experiment in low earth orbit: Investigation of the photostability of carbonates exposed to martian-like UV radiation conditions , 2010 .

[9]  Richard A. Mathies,et al.  Sulfate minerals and organic compounds on Mars , 2006 .

[10]  Elke Rabbow,et al.  Survival of rock-colonizing organisms after 1.5 years in outer space. , 2012, Astrobiology.

[11]  E. Grün,et al.  High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko , 2016, Nature.

[12]  D. Evans,et al.  Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. , 1983, Journal of general microbiology.

[13]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[14]  G Reitz,et al.  Microorganisms and biomolecules in space environment experiment ES 029 on Spacelab-1. , 1984, Advances in space research : the official journal of the Committee on Space Research.

[15]  I. Ribas,et al.  THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES , 2012 .

[16]  Elke Rabbow,et al.  Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station. , 2015, Astrobiology.

[17]  G. Reitz,et al.  Life Sciences , 1984, Science.

[18]  H. Kawai,et al.  Silica Aerogel for Capturing Intact Interplanetary Dust Particles for the Tanpopo Experiment , 2015, Origins of Life and Evolution of Biospheres.

[19]  Christopher Kitts,et al.  PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite , 2011, MOEMS-MEMS.

[20]  J. Waite,et al.  The Process of Tholin Formation in Titan's Upper Atmosphere , 2007, Science.

[21]  Paul Mahaffy,et al.  Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays , 2012 .

[22]  Frances Westall,et al.  Astrobiology and the Possibility of Life on Earth and Elsewhere… , 2015, Space Science Reviews.

[23]  C. Cockell,et al.  The ultraviolet environment of Mars: biological implications past, present, and future. , 2000, Icarus.

[24]  F. Duvernay,et al.  Importance of thermal reactivity for hexamethylenetetramine formation from simulated interstellar ices , 2013 .

[25]  Elke Rabbow,et al.  Earth as a Tool for Astrobiology—A European Perspective , 2017, Space Science Reviews.

[26]  D. Gough Solar interior structure and luminosity variations , 1981 .

[27]  Elke Rabbow,et al.  The Planetary and Space Simulation Facilities at DLR Cologne , 2016 .

[28]  S. Incerti,et al.  Preparation of the Biochip experiment on the EXPOSE-R2 mission outside the International Space Station , 2013 .

[29]  Cyril Szopa,et al.  UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions. , 2010, Astrobiology.

[30]  G. Horneck,et al.  LIFE Experiment: Isolation of Cryptoendolithic Organisms from Antarctic Colonized Sandstone Exposed to Space and Simulated Mars Conditions on the International Space Station , 2012, Origins of Life and Evolution of Biospheres.

[31]  M. Shea,et al.  CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code , 1997 .

[32]  Ernest Hilsenrath,et al.  Solar irradiance reference spectra for two solar active levels , 2004 .

[33]  W. Nicholson Ancient micronauts: interplanetary transport of microbes by cosmic impacts. , 2009, Trends in microbiology.

[34]  B. Foing,et al.  The ORGANIC experiment on EXPOSE-R on the ISS: Flight sample preparation and ground control spectroscopy , 2011 .

[35]  Regina Lee,et al.  Calibration and in-orbit performance of the Argus 1000 spectrometer - the Canadian pollution monitor , 2010 .

[36]  Cyril Szopa,et al.  The AMINO experiment: methane photolysis under Solar VUV irradiation on the EXPOSE-R facility of the International Space Station , 2014, International Journal of Astrobiology.

[37]  S. Sandford,et al.  Modeling the Unidentified Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons , 1999, The Astrophysical journal.

[38]  Christopher P. McKay,et al.  Stepping stones toward global space exploration , 2011 .

[39]  Frances Westall,et al.  Volcaniclastic habitats for early life on Earth and Mars : A case study from 3.5 Ga-old rocks from the Pilbara, Australia , 2011 .

[40]  J. Mayo Greenberg,et al.  Approaching the Interstellar Grain Organic Refractory Component , 1995 .

[41]  A. Jolly,et al.  OPTIMIZATION OF A SOLAR SIMULATOR FOR PLANETARY-PHOTOCHEMICAL STUDIES , 2015 .

[42]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[43]  T. Owen,et al.  Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[44]  J. P. Harrison,et al.  The limits for life under multiple extremes. , 2013, Trends in microbiology.

[45]  H. Spence,et al.  New measurements of total ionizing dose in the lunar environment , 2011 .

[46]  S. Prasad,et al.  UV radiation field inside dense clouds: its possible existence and chemical implications , 1983 .

[47]  C. Cockell,et al.  Isolation of Novel Extreme-Tolerant Cyanobacteria from a Rock-Dwelling Microbial Community by Using Exposure to Low Earth Orbit , 2010, Applied and Environmental Microbiology.

[48]  W. Ip,et al.  VACUUM ULTRAVIOLET EMISSION SPECTRUM MEASUREMENT OF A MICROWAVE-DISCHARGE HYDROGEN-FLOW LAMP IN SEVERAL CONFIGURATIONS: APPLICATION TO PHOTODESORPTION OF CO ICE , 2013 .

[49]  S. Onofri,et al.  Characterisation of Growth and Ultrastructural Effects of the Xanthoria elegans Photobiont After 1.5 Years of Space Exposure on the International Space Station , 2016, Origins of Life and Evolution of Biospheres.

[50]  F. Raulin,et al.  Photochemical growing of complex organics in planetary atmospheres , 1996 .

[51]  H. Newell,et al.  Radiation environment in space. , 1960, Science.

[52]  John Robert Brucato,et al.  Habitability on planetary surfaces: interdisciplinary preparation phase for future Mars missions , 2009, International Journal of Astrobiology.

[53]  Alexander G. G. M. Tielens,et al.  Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .

[54]  Bernard H. Foing,et al.  The ORGANICS experiment on BIOPAN V: UV and space exposure of aromatic compounds , 2007 .

[55]  M. Potgieter,et al.  The dynamic heliosphere, solar activity, and cosmic rays , 2010 .

[56]  Hervé Cottin,et al.  UVolution: Compared photochemistry of prebiotic organic compounds in low Earth orbit and in the laboratory , 2010 .

[57]  James Garry,et al.  Analysis and survival of amino acids in Martian regolith analogs , 2006 .

[58]  G. Reitz,et al.  Long-term survival of bacterial spores in space. , 1994, Advances in space research : the official journal of the Committee on Space Research.

[59]  A. Ricco,et al.  Organics Exposure in Orbit (OREOcube): A next-generation space exposure platform. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[60]  A. Hauchecorne,et al.  Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis , 2005, Nature.

[61]  G. Horneck,et al.  Survival of lichens and bacteria exposed to outer space conditions – Results of the Lithopanspermia experiments , 2010 .

[62]  Christopher P McKay,et al.  Haze aerosols in the atmosphere of early Earth: manna from heaven. , 2004, Astrobiology.

[63]  A. Brack,et al.  The AMINO experiment: a laboratory for astrochemistry and astrobiology on the EXPOSE-R facility of the International Space Station , 2014, International Journal of Astrobiology.

[64]  Simulations of the radiation environment at ISS altitudes , 2009 .

[65]  G. Flynn The delivery of organic matter from asteroids and comets to the early surface of Mars , 1996 .

[66]  S. Onofri,et al.  Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS , 2014, International Journal of Astrobiology.

[67]  G. Horneck,et al.  Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[68]  Daniel N. Baker,et al.  Radiation belts : models and standards , 1996 .

[69]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[70]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[71]  Shigeru Kitayama,et al.  PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation , 2004, Molecular microbiology.

[72]  H. Bücker,et al.  A Descriptive Analysis of the Apollo 16 Microbial Response to Space Environment Experiment , 1974 .

[73]  Alexander G. G. M. Tielens,et al.  Interstellar Polycyclic Aromatic Hydrocarbon Molecules , 2008 .

[74]  C. Pilorget,et al.  Automated algorithms to identify and locate grains of specific composition for NIR hyperspectral microscopes: Application to the MicrOmega instrument onboard ExoMars , 2014 .

[75]  L. Giovangrandi,et al.  Autonomous Genetic Analysis System to Study Space Effects on Microorganisms: Results from Orbit , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[76]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[77]  P. Coll,et al.  Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions. , 2009, Astrobiology.

[78]  S. Bajt,et al.  THE ORIGIN OF THE 3.4 μm FEATURE IN WILD 2 COMETARY PARTICLES AND IN ULTRACARBONACEOUS INTERPLANETARY DUST PARTICLES , 2013, 1301.7470.

[79]  B. Simoneit,et al.  Biomarkers as tracers for life on early earth and mars , 1996, Origins of life and evolution of the biosphere.

[80]  F. J. Sánchez,et al.  Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics , 2013, Origins of Life and Evolution of Biospheres.

[81]  Nicholas A. Lyons,et al.  On the evolution of bacterial multicellularity. , 2015, Current opinion in microbiology.

[82]  Olivier Poch,et al.  Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the "Mars organic molecule irradiation and evolution" (MOMIE) setup , 2013 .

[83]  M A Smith,et al.  Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment. , 2012, Astrobiology.

[84]  E. Rabbow,et al.  Preservation of Biomarkers from Cyanobacteria Mixed with MarsLike Regolith Under Simulated Martian Atmosphere and UV Flux , 2015, Origins of Life and Evolution of Biospheres.

[85]  H. Lowenstam,et al.  Minerals formed by organisms. , 1981, Science.

[86]  F. Raulin,et al.  COMETARY ORGANIC CHEMISTRY: A REVIEW FROM OBSERVATIONS, NUMERICAL AND EXPERIMENTAL SIMULATIONS , 1999 .

[87]  Frances Westall,et al.  Preservation of organic matter in the STONE 6 artificial meteorite experiment , 2011 .

[88]  G. Horneck,et al.  Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. , 2008, Astrobiology.

[89]  Mark A. Sephton,et al.  Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah , 2011, International Journal of Astrobiology.

[90]  Charles S. Cockell,et al.  Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment , 2008 .

[91]  M Luszik-Bhadra,et al.  Space radiation measurements on-board ISS--the DOSMAP experiment. , 2005, Radiation protection dosimetry.

[92]  V. Sautter,et al.  Tissint Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of Mars , 2012, Science.

[93]  Giovanni Minelli,et al.  The development of the Space Environment Viability of Organics (SEVO) experiment aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) satellite , 2012 .

[94]  G. Reitz,et al.  An Adaptive Response to Uncertainty Generates Positive and Negative Contrast Effects , 2014 .

[95]  Zita Martins,et al.  Organic Chemistry of Carbonaceous Meteorites , 2011 .

[96]  David Krejci,et al.  A survey and assessment of the capabilities of Cubesats for Earth observation , 2012 .

[97]  F. Duvernay,et al.  CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS , 2015 .

[98]  Eric Caillibot,et al.  Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite , 2006 .

[99]  Ping Wang,et al.  Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment. , 2015, Life sciences in space research.

[100]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[101]  G. Strazzulla,et al.  Organic samples produced by ion bombardment of ices for the EXPOSE-R2 mission on the International Space Station , 2015 .

[102]  G. Wächtershäuser,et al.  Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. , 1998, Science.

[103]  A. Brack,et al.  The Perseus Exobiology Mission on MIR Behaviour of Amino Acids and Peptides in Earth Orbit , 2002, Origins of life and evolution of the biosphere.

[104]  Eva Mateo-Martí,et al.  The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile , 2012 .

[105]  J. Hörandel,et al.  Cosmic rays at the highest energies , 2010 .

[106]  Yuta Takahashi,et al.  The Possible Interplanetary Transfer of Microbes: Assessing the Viability of Deinococcus spp. Under the ISS Environmental Conditions for Performing Exposure Experiments of Microbes in the Tanpopo Mission , 2013, Origins of Life and Evolution of Biospheres.

[107]  G. Reitz,et al.  Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology , 2012 .

[108]  G. Horneck,et al.  EXPOSE-E: an ESA astrobiology mission 1.5 years in space. , 2012, Astrobiology.

[109]  J. Barth,et al.  Model for Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra , 2007, IEEE Transactions on Nuclear Science.

[110]  G. Reitz,et al.  Protection of Bacterial Spores in Space, a Contribution to the Discussion on Panspermia , 2001, Origins of life and evolution of the biosphere.

[111]  E. Dartois,et al.  Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon , 2006 .

[112]  Bernard H. Foing,et al.  Amino acid photostability on the Martian surface , 2005 .

[113]  Patricia M. Dove,et al.  An Overview of Biomineralization Processes and the Problem of the Vital Effect , 2003 .

[114]  S. Kitayama,et al.  DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans , 1983, Journal of bacteriology.

[115]  Manish R. Patel,et al.  Influence of mineralogy on the preservation of amino acids under simulated Mars conditions , 2016 .

[116]  Alan W. Schwartz,et al.  Extraterrestrial nucleobases in the Murchison meteorite , 2008 .

[117]  M. Ohmori,et al.  The Heat Tolerance of Dry Colonies of a Terrestrial Cyanobacterium, Nostoc sp. HK-01 , 2015 .

[118]  E. Herbst,et al.  Complex Organic Interstellar Molecules , 2009 .

[119]  T. Nawroth,et al.  ERA-experiment "Space Biochemistry". , 1995, Advances in space research : the official journal of the Committee on Space Research.

[120]  D. Loizeau,et al.  Habitability on Mars from a microbial point of view. , 2013, Astrobiology.

[121]  D. Joyeux,et al.  DESIRS : a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL , 2012, Journal of synchrotron radiation.

[122]  M. Moore,et al.  Photodestruction of Relevant Interstellar Molecules in Ice Mixtures , 2003 .

[123]  René Demets,et al.  Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? The ESA artificial meteorite experiment STONE , 2002 .

[124]  A. Zent,et al.  The photochemical stability of carbonates on Mars. , 2006, Astrobiology.

[125]  G. Reitz,et al.  Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. , 2010, Astrobiology.

[126]  H. Kawai,et al.  Investigation of the Interplanetary Transfer of Microbes in the Tanpopo Mission at the Exposed Facility of the International Space Station. , 2016, Astrobiology.

[127]  Uwe J. Meierhenrich,et al.  N-(2-Aminoethyl)glycine and Amino Acids from Interstellar Ice Analogues , 2012 .

[128]  Barry H. Mauk,et al.  Introduction to Geomagnetically Trapped Radiation , 1996 .

[129]  Cyril Szopa,et al.  Search for organic molecules at the Mars surface: The “Martian Organic Material Irradiation and Evolution” (MOMIE) project , 2008 .

[130]  G. Horneck,et al.  EXPOSE-R cosmic radiation time profile , 2014, International Journal of Astrobiology.

[131]  P J Stoffella,et al.  No evidence of adverse effects on germination, emergence, and fruit yield due to space exposure of tomato seeds. , 1996, Journal of the American Society for Horticultural Science. American Society for Horticultural Science.

[132]  Henry R. Hertzfeld,et al.  Cubesats: Cost-effective science and technology platforms for emerging and developing nations , 2011 .

[133]  Pascal Lee,et al.  Interplanetary transfer of photosynthesis: an experimental demonstration of a selective dispersal filter in planetary island biogeography. , 2007, Astrobiology.

[134]  T. Dachev,et al.  Relativistic electrons high doses at International Space Station and Foton M2/M3 satellites , 2009 .

[135]  Laurent Nahon,et al.  NON-RACEMIC AMINO ACID PRODUCTION BY ULTRAVIOLET IRRADIATION OF ACHIRAL INTERSTELLAR ICE ANALOGS WITH CIRCULARLY POLARIZED LIGHT , 2011 .

[136]  J. Lederberg,et al.  Exobiology: approaches to life beyond the earth. , 1960, Science.

[137]  William Marshall,et al.  Detection of Water in the LCROSS Ejecta Plume , 2010, Science.

[138]  B. Moseley,et al.  Isolation and properties of a recombination-deficient mutant of Micrococcus radiodurans , 1975, Journal of bacteriology.

[139]  G. Strazzulla,et al.  Evolution of icy surfaces : an experimental approach , 1998 .

[140]  G. DeFouw,et al.  The O/OREOS mission: first science data from the space environment viability of organics (SEVO) payload. , 2012, Astrobiology.

[141]  D. J. Andrews,et al.  CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy , 2015, Science.

[142]  T. Gaisser Cosmic rays and particle physics , 2016 .

[143]  C. Friedericks,et al.  The O/OREOS mission—Astrobiology in low Earth orbit , 2014 .

[144]  A. Ricco,et al.  SEVO ON THE GROUND: DESIGN OF A LABORATORY SOLAR SIMULATION IN SUPPORT OF THE O/OREOS MISSION , 2014 .

[145]  Gary J. Rottman,et al.  The SORCE Mission , 2005 .

[146]  Y. Takano,et al.  Abiotic synthesis of high-molecular-weight organics from an inorganic gas mixture of carbon monoxide, ammonia, and water by 3 MeV proton irradiation , 2004 .

[147]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[148]  Elke Rabbow,et al.  Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth , 2011, The ISME Journal.

[149]  H James Cleaves,et al.  Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[151]  E. A. Burke,et al.  Extreme Value Analysis of Solar Energetic Proton Peak Fluxes , 1998 .

[152]  Manish R. Patel,et al.  Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor , 2002 .

[153]  M D NIELSEN,et al.  Cosmic Rays , 1930, Nature.

[154]  René Demets,et al.  Past, present and future of Biopan , 2004 .

[155]  A. Brack,et al.  The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low-earth orbit. , 2012, Astrobiology.

[156]  Frances Westall,et al.  Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth ’ s atmosphere : the STONE 6 experiment , 2012 .

[157]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[158]  G. Reitz,et al.  Growth phase-dependent UV-C resistance of Bacillus subtilis: data from a short-term evolution experiment , 2011, Archives of Microbiology.

[159]  S. Mann Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry , 2002 .

[160]  M. Cadene,et al.  The AMINO experiment: exposure of amino acids in the EXPOSE-R experiment on the International Space Station and in laboratory , 2014, International Journal of Astrobiology.

[161]  C. Cockell,et al.  Experimental methods for studying microbial survival in extraterrestrial environments. , 2010, Journal of microbiological methods.

[162]  L. Rothschild,et al.  Biopan-survival I: exposure of the osmophiles synechococcus sp. (Nageli) and haloarcula sp. to the space environment , 1998 .

[163]  N. Johnson,et al.  A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae , 2008, Proceedings of the International Astronomical Union.

[164]  Elke Rabbow,et al.  Tardigrades survive exposure to space in low Earth orbit , 2008, Current Biology.

[165]  A. Brack,et al.  Exposure of amino acids and derivatives in the Earth orbit , 2002 .

[166]  P. Lasch,et al.  Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research , 2014 .

[167]  Pascale Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2000 .

[168]  Laurent Nahon,et al.  Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs , 2016, Science.

[169]  M. Simakov,et al.  Abiogenic synthesis of nucleotides in conditions of space flight of the biosputnik ``BION-11'' , 1999 .

[170]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[171]  The SORCE Science Data System , 2005 .

[172]  G. Reitz,et al.  Mutagenesis in bacterial spores exposed to space and simulated martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. , 2012, Astrobiology.

[173]  G. Horneck,et al.  Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis. , 1998, Advances in space research : the official journal of the Committee on Space Research.

[174]  Jennifer Kingston,et al.  6U CubeSat design for Earth observation with 6.5m GSD, five spectral bands and 14Mbps downlink , 2010 .

[175]  H. Matsumoto,et al.  Space radiation environment in low earth orbit during solar-activity minimum period from 2006 through 2011 , 2013 .

[176]  G. Horneck,et al.  Time profile of cosmic radiation exposure during the EXPOSE-E mission: the R3DE instrument. , 2012, Astrobiology.

[177]  G. Wächtershäuser,et al.  Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. , 1997, Science.

[178]  G. Reitz,et al.  Cosmic radiation exposure of biological test systems during the EXPOSE-R mission , 2014, International Journal of Astrobiology.

[179]  Olivier Poch,et al.  Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions. , 2015, Astrobiology.

[180]  C. Cockell,et al.  Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions , 2009, Origins of Life and Evolution of Biospheres.

[181]  D. Padgett,et al.  The c2d Spitzer Spectroscopic Survey of Ices around Low-Mass Young Stellar Objects. I. H2O and the 5-8 μm Bands , 2007, 0711.4616.

[182]  J. Crowe,et al.  Anhydrobiosis: a strategy for survival. , 1992, Advances in space research : the official journal of the Committee on Space Research.

[183]  K. Marti,et al.  COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .

[184]  A. Brack,et al.  Photochemical processing of amino acids in Earth orbit , 1998 .

[185]  G. Horneck,et al.  The astrobiological mission EXPOSE-R on board of the International Space Station , 2014, International Journal of Astrobiology.

[186]  A. Davila,et al.  The Last Possible Outposts for Life on Mars. , 2016, Astrobiology.

[187]  The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit. , 2012, Astrobiology.

[188]  J. Norbury Perspective on space radiation for space flights in 2020-2040 , 2011 .

[189]  N. Fray,et al.  VUV and mid-UV photoabsorption cross sections of thin films of adenine: Application on its photochemistry in the solar system , 2014 .

[190]  J. Vera Lichens as survivors in space and on Mars , 2012 .

[191]  G. Reitz,et al.  The Radiation Assessment Detector (RAD) Investigation , 2012 .

[192]  G. Horneck,et al.  Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission. , 2012, Astrobiology.

[193]  A. Vasavada,et al.  Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover , 2014, Science.

[194]  P Coll,et al.  Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars , 2015, Journal of geophysical research. Planets.

[195]  N. Gontareva,et al.  The possibility of nucleotide abiogenic synthesis in conditions of “KOSMOS-2044” satellite space flight , 1999 .

[196]  G. S. Hoog,et al.  Fungi of the Antarctic: Evolution under extreme conditions , 2005 .

[197]  R. Torre,et al.  Lichens, new and promising material from experiments in astrobiology , 2008 .

[198]  E. Szuszkiewicz,et al.  Cosmic rays: a review for astrobiologists. , 2009, Astrobiology.

[199]  G. Horneck,et al.  Lichens survive in space: results from the 2005 LICHENS experiment. , 2007, Astrobiology.

[200]  J. Bréhéret,et al.  Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life , 2015, Astrobiology.

[201]  Laurent Nahon,et al.  Photonenergy-controlled symmetry breaking with circularly polarized light. , 2014, Angewandte Chemie.

[202]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[203]  N. Gontareva,et al.  Exobiological investigations on Russian spacecrafts. , 2003, Astrobiology.

[204]  G. Reitz,et al.  Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E. , 2012, Astrobiology.

[205]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[206]  J. Hotchin,et al.  The survival of terrestrial microorganisms in space at orbital altitudes during Gemini satellite experiments. , 1968, Life sciences and space research.

[207]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[208]  G. P. Ginet,et al.  AE9, AP9 and SPM: New Models for Specifying the Trapped Energetic Particle and Space Plasma Environment , 2013 .

[209]  B. Foing,et al.  First results of the ORGANIC experiment on EXPOSE-R on the ISS , 2014, International Journal of Astrobiology.

[210]  P. Blasi On the origin of high energy cosmic rays , 2010 .

[211]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.