Digital Commons @ University of Digital Commons @ University of South Florida South Florida

we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.

[1]  N. Nakicenovic,et al.  Summary for policymakers , 1963 .

[2]  T. Frölicher,et al.  Biogeochemical extremes and compound events in the ocean , 2021, Nature.

[3]  Gary P. Griffith,et al.  Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers , 2021, Frontiers in Ecology and Evolution.

[4]  R. Feely,et al.  Integrated Assessment of Ocean Acidification Risks to Pteropods in the Northern High Latitudes: Regional Comparison of Exposure, Sensitivity and Adaptive Capacity , 2021, Frontiers in Marine Science.

[5]  E. Murphy,et al.  Global Connectivity of Southern Ocean Ecosystems , 2021, Frontiers in Ecology and Evolution.

[6]  C. Lewis,et al.  The Effects of Combined Ocean Acidification and Nanoplastic Exposures on the Embryonic Development of Antarctic Krill , 2021, Frontiers in Marine Science.

[7]  S. Morley,et al.  Local Drivers of Change in Southern Ocean Ecosystems: Human Activities and Policy Implications , 2021, Frontiers in Ecology and Evolution.

[8]  M. Long,et al.  Detecting Climate Signals in Southern Ocean Krill Growth Habitat , 2021, Frontiers in Marine Science.

[9]  M. Pinkerton,et al.  Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean , 2021, Frontiers in Ecology and Evolution.

[10]  S. Morley,et al.  Responses of Southern Ocean Seafloor Habitats and Communities to Global and Local Drivers of Change , 2021, Frontiers in Marine Science.

[11]  J. Xavier,et al.  Robust model-based indicators of regional differences in food-web structure in the Southern Ocean , 2021 .

[12]  H. Hop,et al.  Winter Carnivory and Diapause Counteract the Reliance on Ice Algae by Barents Sea Zooplankton , 2021, Frontiers in Marine Science.

[13]  R. Feely,et al.  Biological Impact of Ocean Acidification in the Canadian Arctic: Widespread Severe Pteropod Shell Dissolution in Amundsen Gulf , 2021, Frontiers in Marine Science.

[14]  Y. Cherel,et al.  Population demographics and growth rate of Salpa thompsoni on the Kerguelen Plateau , 2021 .

[15]  E. Murphy,et al.  Future Risk for Southern Ocean Ecosystem Services Under Climate Change , 2021, Frontiers in Marine Science.

[16]  Vivitskaia J. D. Tulloch,et al.  Global Drivers on Southern Ocean Ecosystems: Changing Physical Environments and Anthropogenic Pressures in an Earth System , 2020, Frontiers in Marine Science.

[17]  E. Murphy,et al.  Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean , 2020, Nature Communications.

[18]  Y. Ropert‐Coudert,et al.  Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate , 2020, Frontiers in Ecology and Evolution.

[19]  T. Branch Humpback whale abundance south of 60°S from three complete circumpolar sets of surveys , 2020 .

[20]  A. Brierley,et al.  Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation , 2020, Communications Earth & Environment.

[21]  Guang Yang,et al.  Changing circumpolar distributions and isoscapes of Antarctic krill: Indo‐Pacific habitat refuges counter long‐term degradation of the Atlantic sector , 2020, Limnology and Oceanography.

[22]  E. Hofmann,et al.  Linkage of the physical environments in the northern Antarctic Peninsula region to the Southern Annular Mode and the implications for the phytoplankton production , 2020 .

[23]  G. Hosie,et al.  Zooplankton in the Southern Ocean from the continuous plankton recorder: Distributions and long-term change , 2020 .

[24]  G. Tarling Routine metabolism of Antarctic krill (Euphausia superba) in South Georgia waters: absence of metabolic compensation at its range edge , 2020, Marine Biology.

[25]  S. Kawaguchi,et al.  Temperature–Induced Hatch Failure and Nauplii Malformation in Antarctic Krill , 2020, Frontiers in Marine Science.

[26]  E. Murphy,et al.  Recent Decrease of Summer Sea Ice in the Weddell Sea, Antarctica , 2020, Geophysical Research Letters.

[27]  O. Schofield,et al.  Zooplankton diel vertical migration during Antarctic summer , 2020 .

[28]  U. Berger,et al.  Blooms of a key grazer in the Southern Ocean – An individual-based model of Salpa thompsoni , 2020, Progress in Oceanography.

[29]  L. Jørgensen,et al.  Novel feeding interactions amplify the impact of species redistribution on an Arctic food web , 2020, Global change biology.

[30]  G. Watters,et al.  Flexibility in Antarctic krill Euphausia superba decouples diet and recruitment from overwinter sea-ice conditions in the northern Antarctic Peninsula , 2020 .

[31]  E. Murphy,et al.  Circumpolar projections of Antarctic krill growth potential , 2020, Nature Climate Change.

[32]  J. Melbourne-Thomas,et al.  The policy relevance of Southern Ocean food web structure: Implications of food web change for fisheries, conservation and carbon sequestration , 2020 .

[33]  K. Daly,et al.  Drivers of concentrated predation in an Antarctic marginal-ice-zone food web , 2020, Scientific Reports.

[34]  S. Kawaguchi,et al.  Thysanoessa macrura in the southern Kerguelen region: Population dynamics and biomass , 2020 .

[35]  A. Fraser,et al.  Salpa thompsoni in the Indian Sector of the Southern Ocean: Environmental drivers and life history parameters , 2020 .

[36]  J. Sallée,et al.  Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate , 2020, Nature Climate Change.

[37]  G. Watters,et al.  Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator-prey interaction lead to erroneous conclusions about precaution , 2020, Scientific Reports.

[38]  J. Franklin,et al.  Climate change and ecosystems: threats, opportunities and solutions , 2020, Philosophical Transactions of the Royal Society B.

[39]  N. Bindoff,et al.  Antarctic Futures: An Assessment of Climate-Driven Changes in Ecosystem Structure, Function, and Service Provisioning in the Southern Ocean. , 2020, Annual review of marine science.

[40]  L. Kapsenberg,et al.  Standing genetic variation fuels rapid adaptation to ocean acidification , 2019, Nature Communications.

[41]  S. Chown,et al.  The State and Future of Antarctic Environments in a Global Context , 2019, Annual Review of Environment and Resources.

[42]  E. Bresnan,et al.  Relationship between shell integrity of pelagic gastropods and carbonate chemistry parameters at a Scottish Coastal Observatory monitoring site , 2019, ICES Journal of Marine Science.

[43]  A. Punt,et al.  Assessing the recovery of an Antarctic predator from historical exploitation , 2019, Royal Society Open Science.

[44]  P. Boyd,et al.  The importance of Antarctic krill in biogeochemical cycles , 2019, Nature Communications.

[45]  D. Bromwich,et al.  Sustained Antarctic Research: A 21st Century Imperative , 2019, One Earth.

[46]  E. Murphy,et al.  Myctophid Fish (Family Myctophidae) Are Central Consumers in the Food Web of the Scotia Sea (Southern Ocean) , 2019, Front. Mar. Sci..

[47]  G. Tarling,et al.  Habitat partitioning in Antarctic krill: Spawning hotspots and nursery areas , 2019, PloS one.

[48]  M. Pujol,et al.  Observations of the Antarctic Circumpolar Current Over the Udintsev Fracture Zone, the Narrowest Choke Point in the Southern Ocean , 2019, Journal of Geophysical Research: Oceans.

[49]  J. Marcovecchio,et al.  Effects of glacier melting on the planktonic communities of two Antarctic coastal areas (Potter Cove and Hope Bay) in summer , 2019, Regional Studies in Marine Science.

[50]  J. Rogelj,et al.  The Antarctic Peninsula Under a 1.5°C Global Warming Scenario , 2019, Front. Environ. Sci..

[51]  K. Swadling,et al.  Trophodynamics of Southern Ocean pteropods on the southern Kerguelen Plateau , 2019, Ecology and evolution.

[52]  M. Graeve,et al.  Varying dependency of Antarctic euphausiids on ice algae- and phytoplankton-derived carbon sources during summer , 2019, Marine Biology.

[53]  S. Kawaguchi,et al.  In situ growth rate estimates of Southern Ocean krill, Thysanoessa macrura , 2019, Antarctic Science.

[54]  E. Murphy,et al.  Circumpolar patterns in Antarctic krill larval recruitment: an environmentally driven model , 2019, Marine Ecology Progress Series.

[55]  Éva E Plagányi,et al.  Future recovery of baleen whales is imperiled by climate change , 2019, Global change biology.

[56]  S. Henson,et al.  Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone , 2019, Nature Communications.

[57]  Fabio Piccolin,et al.  The Seasonal Metabolic Activity Cycle of Antarctic Krill (Euphausia superba): Evidence for a Role of Photoperiod in the Regulation of Endogenous Rhythmicity , 2018, Front. Physiol..

[58]  R. Feely,et al.  El Niño-Related Thermal Stress Coupled With Upwelling-Related Ocean Acidification Negatively Impacts Cellular to Population-Level Responses in Pteropods Along the California Current System With Implications for Increased Bioenergetic Costs , 2018, Front. Mar. Sci..

[59]  G. Tarling,et al.  Threatened species drive the strength of the carbonate pump in the northern Scotia Sea , 2018, Nature Communications.

[60]  S. Stammerjohn,et al.  Environmental controls on pteropod biogeography along the Western Antarctic Peninsula , 2018, Limnology and Oceanography.

[61]  N. Henschke,et al.  Latitudinal variations in Salpa thompsoni reproductive fitness , 2018, Limnology and Oceanography.

[62]  S. Candy,et al.  No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016 , 2018, Journal of Crustacean Biology.

[63]  Lauren V. Weatherdon,et al.  Zooplankton monitoring to contribute towards addressing global biodiversity conservation challenges , 2018, Journal of plankton research.

[64]  G. Watters,et al.  Parameter estimation using randomized phases in an integrated assessment model for Antarctic krill , 2018, PloS one.

[65]  H. Grobe,et al.  Copepod species abundance from the Southern Ocean and other regions (1980–2005) – a legacy , 2018, Earth System Science Data.

[66]  A. D. Barton,et al.  Traits structure copepod niches in the North Atlantic and Southern Ocean , 2018, Marine Ecology Progress Series.

[67]  J. A. van Franeker,et al.  Dependency of Antarctic zooplankton species on ice algae‐produced carbon suggests a sea ice‐driven pelagic ecosystem during winter , 2018, Global change biology.

[68]  Jake R. Wallis A description of the post-naupliar development of Southern Ocean krill (Thysanoessa macrura) , 2018, Polar Biology.

[69]  S. Rintoul The global influence of localized dynamics in the Southern Ocean , 2018, Nature.

[70]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[71]  A. Fleming,et al.  Icebergs, sea ice, blue carbon and Antarctic climate feedbacks , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  W. Goodall‐Copestake nrDNA:mtDNA copy number ratios as a comparative metric for evolutionary and conservation genetics , 2018, Heredity.

[73]  S. Kawaguchi,et al.  Modelling growth and reproduction of Antarctic krill, Euphausia superba, based on temperature, food and resource allocation amongst life history functions , 2018 .

[74]  G. Watters,et al.  Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea , 2018, PloS one.

[75]  S. Kawaguchi,et al.  Sexual differentiation, gonad maturation, and reproduction of the Southern Ocean euphausiid Thysanoessa macrura (Sars, 1883) (Crustacea: Euphausiacea) , 2018 .

[76]  G. Tarling,et al.  Pteropods counter mechanical damage and dissolution through extensive shell repair , 2018, Nature Communications.

[77]  G. Beaugrand,et al.  How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations. , 2018, Annual review of marine science.

[78]  G. Tarling,et al.  Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long‐term surface warming , 2018, Global change biology.

[79]  E. Hofmann,et al.  Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica , 2017 .

[80]  G. Hofmann,et al.  Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica , 2017, Conservation physiology.

[81]  D. Bakker,et al.  Southern Ocean pteropods at risk from ocean warming and acidification , 2017, Marine biology.

[82]  Ø. Varpe Life History Adaptations to Seasonality. , 2017, Integrative and comparative biology.

[83]  C. David,et al.  Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters , 2017 .

[84]  T. Krumpen,et al.  The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill , 2017, Nature Ecology & Evolution.

[85]  E. Murphy,et al.  Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean , 2017, Scientific Reports.

[86]  R. Feely,et al.  Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast , 2017, Scientific Reports.

[87]  S. Comeau,et al.  Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean , 2017 .

[88]  H. Hattori,et al.  Distribution in the abundance and biomass of shelled pteropods in surface waters of the Indian sector of the Antarctic Ocean in mid-summer , 2017 .

[89]  R. Feely,et al.  New ocean, new needs: Application of pteropod shell dissolution as a biological indicator for marine resource management , 2017 .

[90]  D. Wolf-Gladrow,et al.  Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean , 2017 .

[91]  E. Pakhomov,et al.  Trans-Atlantic variability in ecology of the pelagic tunicate Salpa thompsoni near the Antarctic Polar Front , 2017 .

[92]  Christopher D. Jones,et al.  Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management , 2017 .

[93]  Walker O. Smith,et al.  Associated dataset: Climate change impacts on southern Ross Sea phytoplankton composition, productivity and export , 2017 .

[94]  A. Davidson,et al.  Southern Ocean Phytoplankton in a Changing Climate , 2017, Front. Mar. Sci..

[95]  Graeme C Hays,et al.  Mismatch between marine plankton range movements and the velocity of climate change , 2017, Nature Communications.

[96]  C. Held,et al.  Global phylogeography of Oithona similis s.l. (Crustacea, Copepoda, Oithonidae) - A cosmopolitan plankton species or a complex of cryptic lineages? , 2017, Molecular phylogenetics and evolution.

[97]  C. Hassler,et al.  First Evaluation of the Role of Salp Fecal Pellets on Iron Biogeochemistry , 2017, Front. Mar. Sci..

[98]  D. Steinberg,et al.  Zooplankton and the Ocean Carbon Cycle. , 2017, Annual review of marine science.

[99]  E. Murphy,et al.  Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change , 2016, Proceedings of the Royal Society B: Biological Sciences.

[100]  J. Berge,et al.  Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems , 2016 .

[101]  G. Lawson,et al.  The metabolic response of thecosome pteropods from the North Atlantic and North Pacific oceans to high CO 2 and low O 2 , 2016 .

[102]  G. Hosie,et al.  KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016 , 2016 .

[103]  W. Goodall‐Copestake One tunic but more than one barcode: evolutionary insights from dynamic mitochondrial DNA in Salpa thompsoni (Tunicata: Salpida) , 2016 .

[104]  S. Kawaguchi,et al.  Under ice habitats for Antarctic krill larvae: Could less mean more under climate warming? , 2016 .

[105]  Sarah Trusiak,et al.  Rapid Evolutionary Rates and Unique Genomic Signatures Discovered in the First Reference Genome for the Southern Ocean Salp, Salpa thompsoni (Urochordata, Thaliacea) , 2016, Genome biology and evolution.

[106]  E. Murphy,et al.  Environmental correlates of Antarctic krill distribution in the Scotia Sea and southern Drake Passage , 2016 .

[107]  A. Piñones,et al.  Projected changes of Antarctic krill habitat by the end of the 21st century , 2016 .

[108]  Kevin M. Johnson,et al.  A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica. , 2016, Marine genomics.

[109]  Corinne Le Quéré,et al.  Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles , 2016 .

[110]  O. Godø,et al.  Is current management of the Antarctic krill fishery in the Atlantic sector of the Southern Ocean precautionary , 2016 .

[111]  R. Feely,et al.  Pteropods on the edge: Cumulative effects of ocean acidification, warming, and deoxygenation , 2016 .

[112]  G. Tarling,et al.  Pteropod eggs released at high pCO2 lack resilience to ocean acidification , 2016, Scientific Reports.

[113]  E. Achterberg,et al.  Effects of acute ocean acidification on spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms , 2016 .

[114]  G. Tarling,et al.  Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification , 2016 .

[115]  G. Tarling,et al.  Growth and shrinkage in Antarctic krill Euphausia superba is sex-dependent , 2016 .

[116]  M. Payne,et al.  The predictive skill of species distribution models for plankton in a changing climate , 2016, Global change biology.

[117]  G. Hosie,et al.  Planktonic foraminiferal biogeography in the Indian sector of the Southern Ocean: Contribution from CPR data , 2016 .

[118]  A. Timmermann,et al.  Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean , 2016 .

[119]  Owen L. Petchey,et al.  Biodiversity and Resilience of Ecosystem Functions. , 2015, Trends in ecology & evolution.

[120]  R. Feely,et al.  Climatological distribution of aragonite saturation state in the global oceans , 2015 .

[121]  André W. Visser,et al.  Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic , 2015, Proceedings of the National Academy of Sciences.

[122]  Randolph M. Jones,et al.  Trophic cascades in the western Ross Sea, Antarctica: revisited , 2015 .

[123]  G. Watters,et al.  Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba) , 2015 .

[124]  S. Stammerjohn,et al.  Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula , 2015 .

[125]  B. Hentschel,et al.  Temperature-dependent growth of Thysanoessa macrura: inter-annual and spatial variability around Elephant Island, Antarctica , 2015 .

[126]  M. Mangel,et al.  More than passive drifters: a stochastic dynamic model for the movement of Antarctic krill , 2015 .

[127]  V. Grimm,et al.  How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model , 2015 .

[128]  J. Santora,et al.  Climate variability and spatiotemporal dynamics of five Southern Ocean krill species , 2015 .

[129]  Janelle E. Braithwaite,et al.  From sea ice to blubber: linking whale condition to krill abundance using historical whaling records , 2015, Polar Biology.

[130]  N. Bednaršek,et al.  Changes in pteropod distributions and shell dissolution across a frontal system in the California Current System , 2015 .

[131]  A. Bowie,et al.  The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling , 2014, PloS one.

[132]  G. Tarling,et al.  The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean) , 2014 .

[133]  T. Newberger,et al.  Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993-2008 , 2014 .

[134]  E. Murphy,et al.  Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013 , 2014 .

[135]  R. Feely,et al.  Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation , 2014, PloS one.

[136]  E. Murphy,et al.  Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries , 2014 .

[137]  C. Duarte,et al.  Changes in the C, N, and P cycles by the predicted salps-krill shift in the southern ocean , 2014, Front. Mar. Sci..

[138]  N. Johnston,et al.  Assessing status and change in Southern Ocean ecosystems , 2014 .

[139]  J. Forcada,et al.  Climate change selects for heterozygosity in a declining fur seal population , 2014, Nature.

[140]  S. Stammerjohn,et al.  Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula , 2014, Nature Communications.

[141]  V. Siegel,et al.  Seasonal changes in the vertical distribution and community structure of Antarctic macrozooplankton and micronekton , 2014 .

[142]  V. Siegel,et al.  Seasonal distribution and life history of Thysanoessa macrura (Euphausiacea, Crustacea) in high latitude waters of the Lazarev Sea, Antarctica , 2014 .

[143]  K. Arrigo,et al.  The oceanography and ecology of the Ross Sea. , 2014, Annual review of marine science.

[144]  D. Pond,et al.  Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance , 2014 .

[145]  A. Polanowski,et al.  Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats , 2013, PloS one.

[146]  A. Ishida,et al.  Risk maps for Antarctic krill under projected Southern Ocean acidification , 2013 .

[147]  J. Santora,et al.  Pteropods and climate off the Antarctic Peninsula , 2013 .

[148]  A. Atkinson,et al.  Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean , 2013, PloS one.

[149]  E. Goetze,et al.  High evolutionary potential of marine zooplankton , 2013, Ecology and evolution.

[150]  K Reid,et al.  Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model. , 2013, Ecological applications : a publication of the Ecological Society of America.

[151]  M. Edwards,et al.  Long-term responses of North Atlantic calcifying plankton to climate change , 2013 .

[152]  H. Dam Evolutionary adaptation of marine zooplankton to global change. , 2013, Annual review of marine science.

[153]  G. Saba,et al.  Increased Feeding and Nutrient Excretion of Adult Antarctic Krill, Euphausia superba, Exposed to Enhanced Carbon Dioxide (CO2) , 2012, PloS one.

[154]  Colleen J. O'Brien,et al.  The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean , 2012 .

[155]  R. Feely,et al.  Extensive dissolution of live pteropods in the Southern Ocean , 2012 .

[156]  U. Riebesell,et al.  Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic , 2012 .

[157]  R. Primicerio,et al.  Limacina retroversa's response to combined effects of ocean acidification and sea water freshening , 2012 .

[158]  P. Trathan,et al.  Diet variability and reproductive performance of macaroni penguins Eudyptes chrysolophus at Bird Island, South Georgia , 2012 .

[159]  D. Costa,et al.  Developing integrated models of Southern Ocean food webs: Including ecological complexity, accounting for uncertainty and the importance of scale , 2012 .

[160]  D. Mackas,et al.  Pteropod time-series from the NE Pacific , 2012 .

[161]  S. Chiba,et al.  Zooplankton population connections, community dynamics, and climate variability , 2012 .

[162]  J. Santora,et al.  Population dynamics of Salpa thompsoni near the Antarctic Peninsula: Growth rates and interannual variations in reproductive activity (1993–2009) , 2012 .

[163]  O. Schofield,et al.  Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula , 2012 .

[164]  M. Collins,et al.  Spatial and Temporal Operation of the Scotia Sea Ecosystem , 2012 .

[165]  V. Siegel,et al.  The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat , 2012, PloS one.

[166]  Z. Xue Preface , 2011 .

[167]  B. Seibel,et al.  Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity , 2011 .

[168]  Qichao Yang,et al.  Relative Changes in Krill Abundance Inferred from Antarctic Fur Seal , 2011, PloS one.

[169]  G. Hosie,et al.  Surface zooplankton distribution patterns during austral summer in the Indian sector of the Southern Ocean, south of Australia , 2011 .

[170]  G. Hosie,et al.  Euphausiid community structure and population structure of Euphausia superba off Adélie Land in the Southern Ocean during austral summer 2003, 2005 and 2008 , 2011 .

[171]  E. Achterberg,et al.  Seabed foraging by Antarctic krill: Implications for stock assessment, bentho‐pelagic coupling, and the vertical transfer of iron , 2011 .

[172]  V. Siegel,et al.  Biology and life cycles of pelagic tunicates in the Lazarev Sea, Southern Ocean , 2011 .

[173]  A. Ishida,et al.  Will krill fare well under Southern Ocean acidification? , 2011, Biology Letters.

[174]  W. Trivelpiece,et al.  Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica , 2011, Proceedings of the National Academy of Sciences.

[175]  Guang Yang,et al.  Inter-annual variation in summer zooplankton community structure in Prydz Bay, Antarctica, from 1999 to 2006 , 2011, Polar Biology.

[176]  A. Clarke,et al.  Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[177]  James G. Mitchell,et al.  Iron defecation by sperm whales stimulates carbon export in the Southern Ocean , 2010, Proceedings of the Royal Society B: Biological Sciences.

[178]  U. Riebesell,et al.  Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth , 2010 .

[179]  G. Hosie,et al.  Zooplankton Atlas of the Southern Ocean: The SCAR SO-CPR Survey (1991–2008) , 2010 .

[180]  S. Comeau,et al.  Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less , 2010 .

[181]  M. Edwards,et al.  Marine plankton phenology and life history in a changing climate: current research and future directions , 2010, Journal of plankton research.

[182]  N. Kelly,et al.  Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (30-80°E) in January-March 2006 , 2010 .

[183]  G. Hosie,et al.  Antarctic mesozooplankton community structure during BROKE-West (30°E–80°E), January–February 2006 , 2010 .

[184]  Ben Raymond,et al.  Spatial and seasonal distribution of adult Oithona similis in the Southern Ocean: Predictions using boosted regression trees , 2010 .

[185]  E. Hofmann,et al.  Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region , 2010 .

[186]  S. F. Umani,et al.  Importance of the contribution of Limacina helicina faecal pellets to the carbon pump in Terra Nova Bay (Antarctica) , 2010 .

[187]  E. Murphy,et al.  Swarms of diversity at the gene cox1 in Antarctic krill , 2010, Heredity.

[188]  V. Siegel,et al.  Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea , 2010 .

[189]  P. Trathan,et al.  The risk to fishery performance associated with spatially resolved management of Antarctic krill (Euphausia superba) harvesting , 2009 .

[190]  Koji Shimada,et al.  Aragonite Undersaturation in the Arctic Ocean: Effects of Ocean Acidification and Sea Ice Melt , 2009, Science.

[191]  E. Murphy,et al.  Variability and predictability of Antarctic krill swarm structure , 2009 .

[192]  B. Meyer,et al.  Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica , 2009 .

[193]  U. Sommer,et al.  Global warming benefits the small in aquatic ecosystems , 2009, Proceedings of the National Academy of Sciences.

[194]  M. Collins,et al.  Feeding ecology of myctophid fishes in the northern Scotia Sea , 2009 .

[195]  Beau B. Gregory,et al.  Rapid biogeographical plankton shifts in the North Atlantic Ocean , 2009 .

[196]  S. Stammerjohn,et al.  Recent Changes in Phytoplankton Communities Associated with Rapid Regional Climate Change Along the Western Antarctic Peninsula , 2009, Science.

[197]  L. Guglielmo,et al.  Spatio-temporal distribution and abundance of Euphausia crystallorophias in Terra Nova Bay (Ross Sea, Antarctica) during austral summer , 2009, Polar Biology.

[198]  W. White,et al.  ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem , 2008, Antarctic Science.

[199]  M. Meredith,et al.  Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: Forcings, characteristics and implications for lower trophic levels , 2008 .

[200]  G. Hosie,et al.  Pteropods in Southern Ocean ecosystems , 2008 .

[201]  M. Meredith,et al.  The summertime plankton community at South Georgia (Southern Ocean): Comparing the historical (1926/1927) and modern (post 1995) records , 2008 .

[202]  E. Murphy,et al.  Oceanic circumpolar habitats of Antarctic krill , 2008 .

[203]  M. Naganobu,et al.  Horizontal and vertical distribution and demography of euphausiids in the Ross Sea and its adjacent waters in 2004/2005 , 2008, Polar Biology.

[204]  Marc Mangel,et al.  Temperature-dependent growth of Antarctic krill: predictions for a changing climate from a cohort model , 2008 .

[205]  A. Richardson,et al.  In hot water: zooplankton and climate change , 2008 .

[206]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[207]  E. Murphy,et al.  Introduction. Antarctic ecology: from genes to ecosystems. Part 2. Evolution, diversity and functional ecology , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[208]  L. Tositti,et al.  First stages of degradation of Limacina helicina shells observed above the aragonite chemical lysocline in Terra Nova Bay (Antarctica) , 2007 .

[209]  E. Murphy,et al.  Climatically driven fluctuations in Southern Ocean ecosystems , 2007, Proceedings of the Royal Society B: Biological Sciences.

[210]  Grégory Beaugrand,et al.  Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and adjacent seas , 2007 .

[211]  M. Vernet,et al.  Ecological responses of Antarctic krill to environmental variability: can we predict the future? , 2007, Antarctic Science.

[212]  E. Murphy,et al.  Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: investigating the roles of ocean and sea ice transport , 2007 .

[213]  P. Ward,et al.  Oithona similis in a high latitude ecosystem: abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod , 2007 .

[214]  I. Boyd,et al.  An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella) , 2007 .

[215]  S. Kawaguchi,et al.  The krill maturity cycle: a conceptual model of the seasonal cycle in Antarctic krill , 2007, Polar Biology.

[216]  M. Collins,et al.  Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[217]  Maria Vernet,et al.  Marine pelagic ecosystems: the West Antarctic Peninsula , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[218]  K Reid,et al.  Modelling Southern Ocean ecosystems: krill, the food-web, and the impacts of harvesting. , 2007, Biological reviews of the Cambridge Philosophical Society.

[219]  N. Teixidó,et al.  A new trophic link between the pelagic and benthic systems on the Antarctic shelf , 2006 .

[220]  G. Hosie,et al.  The seasonal succession of zooplankton in the Southern Ocean south of Australia, part I: The seasonal ice zone , 2006 .

[221]  R. Shreeve,et al.  Plankton community structure and variability in the Scotia Sea: austral summer 2003 , 2006 .

[222]  E. Murphy,et al.  Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermolt period , 2006 .

[223]  Peter Rothery,et al.  Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage , 2006 .

[224]  E. Isla,et al.  The role of zooplankton in the pelagic-benthic coupling of the Southern Ocean* , 2005 .

[225]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[226]  G. Tarling,et al.  Relative production of Calanoides acutus (Copepoda: Calanoida) and Euphausia superba (Antarctic krill) at South Georgia, and its implications at wider scales , 2005 .

[227]  G. Hosie,et al.  Zonal structure of zooplankton communities in the Southern Ocean South of Australia: results from a 2150 km continuous plankton recorder transect , 2005 .

[228]  H. Claustre,et al.  Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend , 2004 .

[229]  Eileen E. Hofmann,et al.  Advection, krill, and Antarctic marine ecosystems , 2004, Antarctic Science.

[230]  J. Croxall,et al.  Management of Southern Ocean fisheries: global forces and future sustainability , 2004, Antarctic Science.

[231]  Peter Rothery,et al.  Long-term decline in krill stock and increase in salps within the Southern Ocean , 2004, Nature.

[232]  P. Froneman,et al.  Zooplankton dynamics in the eastern Atlantic sector of the Southern Ocean during the austral summer 1997/1998—Part 1: Community structure , 2004 .

[233]  E. Pakhomov Salp/krill interactions in the eastern Atlantic sector of the Southern Ocean , 2004 .

[234]  K. Daly,et al.  Comparisons of morphology and neritic distributions of Euphausia crystallorophias and Euphausia superba furcilia during autumn and winter west of the Antarctic Peninsula , 2004, Polar Biology.

[235]  S. Kawaguchi,et al.  Effect of temperature on embryo development time and hatching success of the Antarctic krill Euphausia superba Dana in the laboratory , 2004 .

[236]  E. Murphy,et al.  Modeling the krill transport pathways in the Scotia Sea: spatial and environmental connections generating the seasonal distribution of krill , 2004 .

[237]  G. De’ath,et al.  Life cycle plasticity and differential growth and development in marine and lacustrine populations of an Antarctic copepod , 2004 .

[238]  P. Wilson,et al.  GEOGRAPHIC STRUCTURE OF ADÉLIE PENGUIN POPULATIONS: OVERLAP IN COLONY-SPECIFIC FORAGING AREAS , 2004 .

[239]  E. Hofmann,et al.  A circumpolar modeling study of habitat control of Antarctic krill (Euphausia superba) reproductive success , 2003 .

[240]  B. Seibel,et al.  Cascading Trophic Impacts of Reduced Biomass in the Ross Sea, Antarctica: Just the Tip of the Iceberg? , 2003, The Biological Bulletin.

[241]  G. Hosie,et al.  Development of the Southern Ocean Continuous Plankton Recorder survey , 2003 .

[242]  A. Clarke,et al.  Antarctic marine benthic diversity , 2003 .

[243]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[244]  M. T. Ahmed Millennium ecosystem assessment , 2002, Environmental science and pollution research international.

[245]  B. Meyer,et al.  Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter—I. Furcilia III larvae , 2002 .

[246]  A. Sala,et al.  Krill of the Ross Sea: distribution, abundance and demography of Euphausia superba and Euphausia crystallorophias during the Italian Antarctic Expedition (January-February 2000)* , 2002 .

[247]  R. Shreeve,et al.  Copepod growth and development around South Georgia: relationships with temperature, food and krill , 2002 .

[248]  Frederick Armstrong,et al.  Antarctic Krill Under Sea Ice: Elevated Abundance in a Narrow Band Just South of Ice Edge , 2002, Science.

[249]  S. Schnack-Schiel,et al.  Seasonal feeding patterns of the dominant Antarctic copepods Calanus propinquus and Calanoides acutus in the Weddell Sea , 2001, Polar Biology.

[250]  M. Brandon,et al.  South Georgia, antarctica: a productive, cold water, pelagic ecosystem , 2001 .

[251]  E. Pakhomov Demography and life cycle of Antarctic krill, Euphausia superba, in the Indian sector of the Southern Ocean: long-term comparison between coastal and open-ocean regions , 2000 .

[252]  V. Siegel Krill (Euphausiacea) life history and aspects of population dynamics , 2000 .

[253]  G. Hosie,et al.  Population structure and condition of Antarctic krill (Euphausia superba) off East Antarctica (80-150°E) during the Austral summer of 1995/1996 , 2000 .

[254]  Mark B. Schultz,et al.  Macrozooplankton community structure off East Antarctica (80–150°E) during the Austral summer of 1995/1996 , 2000 .

[255]  P. Froneman,et al.  Composition and spatial variability of macroplankton and micronekton within the Antarctic Polar Frontal Zone of the Indian Ocean during austral autumn 1997 , 2000, Polar Biology.

[256]  A. Atkinson,et al.  Zonal distribution and seasonal vertical migration of copepod assemblages in the Scotia Sea , 2000, Polar Biology.

[257]  E. Hofmann,et al.  Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula , 1999 .

[258]  P. A. Prince,et al.  Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill , 1999 .

[259]  G. Kattner,et al.  Lipid metabolism of the Antarctic euphausiid Thysanmssa macrura and its ecological implications , 1998 .

[260]  A. Brierley,et al.  Interannual variability of the South Georgia marine ecosystem : biological and physical sources of variation in the abundance of krill , 1998 .

[261]  N. Voronina Comparative abundance and distribution of major filter-feeders in the Antarctic pelagic zone , 1998 .

[262]  R. Perissinotto,et al.  The trophic role of the tunicate Salpa thompsoni in the Antarctic marine ecosystem , 1998 .

[263]  R. Gradinger,et al.  Potential effect of ice formation on Antarctic pelagic copepods: salinity induced mortality of Calanus propinquus and Metridia gerlachei in comparison to sympagic acoel turbellarians , 1998, Polar Biology.

[264]  A. Atkinson Life cycle strategies of epipelagic copepods in the Southern Ocean , 1998 .

[265]  R. Perissinotto,et al.  Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, southern ocean , 1998 .

[266]  R. Shreeve,et al.  Egg hatching times of Antarctic copepods , 1998, Polar Biology.

[267]  E. Bonsdorff,et al.  Temporal and spatial variation of dominant pelagic Copepoda (Crustacea) in the Weddell Sea (Southern Ocean) 1929 to 1993 , 1997, Polar Biology.

[268]  W. R. Fraser,et al.  Effects of sea-ice extent and krill or salp dominance on the Antarctic food web , 1997, Nature.

[269]  R. Perissinotto,et al.  Feeding association of the copepod Rhincalanus gigas with the tunicate salp Salpa thompsoni in the southern ocean , 1997 .

[270]  J. Kirkwood The developmental rate ofEuphausia crystallorophias larvae in Ellis Fjord, Vestfold Hills, Antarctica , 1996, Polar Biology.

[271]  C. McQuaid,et al.  Distribution of surface zooplankton and seabirds across the Southern Ocean , 1996, Polar Biology.

[272]  W. Hagen,et al.  Life-cycle strategies of Calanoides acutus, Calanus propinquus, and Metridia gerlachei (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica , 1995 .

[273]  E. Murphy Spatial structure of the Southern Ocean ecosystem : predator-prey linkages in Southern Ocean food webs , 1995 .

[274]  S. Schnack-Schiel,et al.  Seasonal variations in distribution and population structure of Microcalanus pygmaeus and Ctenocalanus citer (Copepoda: Calanoida) in the eastern Weddell Sea, Antarctica , 1994 .

[275]  P. Trathan,et al.  Spatial variability of Antarctic krill in relation to mesoscale hydrography , 1993 .

[276]  M. Huntley,et al.  Copepods in ice-covered seas—Distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas , 1991 .

[277]  T. Hopkins,et al.  Oceanic micronektonic/macrozooplanktonic community structure and feeding in ice covered Antarctic waters during the winter (AMERIEZ 1988) , 1991, Polar Biology.

[278]  L. Quetin,et al.  Behavioral and Physiological Characteristics of the Antarctic Krill, Euphausia superba , 1991 .

[279]  K. Daly Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone , 1990 .

[280]  L. Quetin,et al.  Energetic cost to develop to the first feeding stage of Euphausia superba Dana and the effect of delays in food availability , 1989 .

[281]  M. Huntley,et al.  Biometry and trophodynamics of Salpa thompsoni foxton (Tunicata: Thaliacea) near the Antarctic Peninsula in austral summer, 1983–1984 , 1989, Polar Biology.

[282]  A. V. Aarset,et al.  Cold resistance and metabolic responses to salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia superba , 1989, Polar Biology.

[283]  T. Hopkins,et al.  Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea , 1989 .

[284]  T. Hopkins,et al.  Micronekton and macrozooplankton in the open waters near Antarctic ice edge zones (AMERIEZ 1983 and 1986) , 1989, Polar Biology.

[285]  H. Marschall The overwintering strategy of Antarctic krill under the pack-ice of the Weddell Sea , 1988, Polar Biology.

[286]  U. Piatkowski,et al.  Meso- and macrozooplankton communities in the Weddell Sea, Antarctica , 1988, Polar Biology.

[287]  P. Thomas,et al.  Distribution of Euphausia crystallorophias within Prydz Bay and its importance to the inshore marine ecosystem , 1988, Polar Biology.

[288]  V. Siegel,et al.  Age and growth of Antarctic Euphausiacea (Crustacea) under natural conditions , 1987 .

[289]  D. O'Brien,et al.  Direct Observations of the Behavior of Euphausia Superba and Euphausia Crystallorophias (Crustacea: Euphausiacea) Under Pack Ice During the Antarctic Spring of 1985 , 1987 .

[290]  T. Hopkins Food web of an Antarctic midwater ecosystem , 1985 .

[291]  A. Mucci The solubility of calcite and aragonite in seawater at various salinities , 1983 .

[292]  M. Silver,et al.  Sinking rates of fecal pellets from gelatinous zooplankton (Salps, Pteropods, Doliolids) , 1981 .

[293]  R. Makarov Larval distribution and reproductive ecology of Thysanoessa macrura (Crustacea: Euphausiacea) in the Scotia Sea , 1979 .

[294]  R. Laws Seals and Whales of the Southern Ocean , 1977 .

[295]  N. Voronina The spatial structure of interzonal copepod populations in the Southern Ocean , 1972 .

[296]  E. Odum The strategy of ecosystem development. , 1969, Science.

[297]  G. Huse,et al.  Standing stock of Antarctic krill ( Euphausia superba Dana, 1850) (Euphausiacea) in the Southwest Atlantic sector of the Southern Ocean, 2018–19 , 2021 .

[298]  G. Hosie,et al.  Report on the Status and Trends of Southern Ocean Zooplankton based on the SCAR Southern Ocean Continuous Plankton Recorder (SO-CPR) Survey , 2020 .

[299]  Ryan Driscoll Adapted to Environmental Change: Life History, Diet, and Habitat Choice of Krill in Winter , 2019 .

[300]  Kevin M. Johnson,et al.  Seasonal transcriptomes of the Antarctic pteropod, Limacina helicina antarctica. , 2019, Marine environmental research.

[301]  Vivitskaia J. D. Tulloch,et al.  Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales , 2018 .

[302]  M. Lomas,et al.  What are Marine Ecological Time Series telling us about the Ocean? A status Report. Chapter 6 Southern Ocean , 2017 .

[303]  M. Mangel,et al.  Increasing temperature may shift availability of euphausiid prey in the Southern Ocean , 2017 .

[304]  V. Siegel,et al.  Distribution, Biomass and Demography of Antarctic Krill, Euphausia superba , 2016 .

[305]  P. Trathan,et al.  The Importance of Krill Predation in the Southern Ocean , 2016 .

[306]  S. Kawaguchi Reproduction and Larval Development in Antarctic Krill (Euphausia superba) , 2016 .

[307]  V. Siegel,et al.  High density of ice krill (Euphausia crystallorophias) in the Amundsen sea coastal polynya, Antarctica , 2015 .

[308]  J. Pereira,et al.  Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2015 .

[309]  E. Hofmann,et al.  Modeling the transport and fate of euphausiids in the Ross Sea , 2015, Polar Biology.

[310]  E. Murphy,et al.  Variability in transport pathways on and around the South Georgia shelf, Southern Ocean: Implications for recruitment and retention , 2014 .

[311]  E. Murphy,et al.  A foodweb model to explore uncertainties in the South Georgia shelf pelagic ecosystem , 2012 .

[312]  P. Ward,et al.  An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships , 2012 .

[313]  E. Murphy,et al.  Antarctic macrozooplankton of the southwest Atlantic sector and Bellingshausen Sea: Baseline historical distributions (Discovery Investigations, 1928–1935) related to temperature and food, with projections for subsequent ocean warming , 2012 .

[314]  H. Venables,et al.  Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms , 2012 .

[315]  G. Tarling,et al.  Mesozooplankton community structure and variability in the Scotia Sea: A seasonal comparison , 2012 .

[316]  B. Meyer The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective , 2011, Polar Biology.

[317]  Francis W. Zwiers,et al.  Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties , 2010 .

[318]  M. Angilletta Thermal Adaptation: A Theoretical and Empirical Synthesis , 2009 .

[319]  K. Daly,et al.  Chapter 9 Zooplankton Processes in Arctic and Antarctic Polynyas , 2007 .

[320]  T. Tamura,et al.  Distribution patterns and biomasses of Antarctic krill ( Euphausia superba ) and ice krill ( E . crystallorophias ) with referece to Antarctic minke whales in the Ross Sea in 2005 using Kaiyo Maru-JARPA joint survey data , 2006 .

[321]  M. Naganobu,et al.  CHARACTERISTICS OF SEASONAL VARIATION IN DIURNAL VERTICAL MIGRATION AND AGGREGATION OF ANTARCTIC KRILL (EUPHAUSIA SUPERBA) IN THE SCOTIA SEA, USING JAPANESE FISHERY DATA , 2005 .

[322]  D. Rothwell The Southern Ocean , 2004 .

[323]  P. Froneman,et al.  Salp/krill interactions in the Southern Ocean:spatial segregation and implications for the carbon flux , 2002 .

[324]  I. Everson Krill: biology, ecology and fisheries , 2000 .

[325]  D. Boltovskoy South atlantic zooplankton , 1999 .

[326]  R. Perissinotto,et al.  Antarctic neritic krill Euphausia crystallorophias: spatio-temporal distribution, growth and grazing rates , 1996 .

[327]  K. Daly,et al.  Particulate Dimethylsulfoniopropionate Removal and Dimethylsulfide Production by Zooplankton in the Southern Ocean , 1996 .

[328]  H. Eicken,et al.  Life cycle strategy of the Antarctic calanoid copepod Stephos longipes , 1995 .

[329]  A. Clarke,et al.  Krill energetics: seasonal and environmental aspects of the physiology of Euphausia superba , 1994 .

[330]  W. Nordhausen Winter abundance and distribution of Euphausia superba, E. crystallorophias, and Thysanoessa macrura in Gerlache Strait and Crystal Sound, Antarctica , 1994 .

[331]  W. Nordhausen Distribution and growth of larval and adult Thy-sanoessa macrura (Euphausiacea) in the Bransfield Strait Region, Antarctica , 1992 .

[332]  V. Siegel A Concept of Seasonal Variation of Krill (Euphausia superba) Distribution and Abundance West of the Antarctic Peninsula , 1988 .

[333]  M. C. Macaulay,et al.  Abundance and distribution of krill in the ice edge zone of the Weddell Sea, austral spring 1983 , 1988 .

[334]  P. Hamner,et al.  Foraging behavior of antarctic krill Euphausia superba on sea ice microalgae , 1988 .

[335]  A. Clarke Energy Flow in the Southern Ocean Food Web , 1985 .

[336]  Gaboury Ej The new ecology. , 1970, Canadian journal of public health = Revue canadienne de sante publique.

[337]  J. Mauchline,et al.  The biology of euphausiids , 1967 .

[338]  K. H. Andrews The distribution and life-history of Calanoides acutus(Giesbrecht). , 1966 .

[339]  J. Marr The natural history and geography of the Antarctic krill (Euphausia superba Dana) , 1961 .

[340]  A. Lombana,et al.  Impact of climate change on Antarctic krill , 2012 .

[341]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2022 .