Dynamic pressure-induced amorphous transition and crystallization behavior of 4-methylpyridine

[1]  Xudong Guo,et al.  Programmable Compressing and Decompressing for Controllable Polymerization: The Case of Methyl Methacrylate , 2023, The Journal of Physical Chemistry C.

[2]  Yonghao Han,et al.  Study on pressure-induced isostructural phase transition and electrical transport properties of BiOBr. , 2023, Physical chemistry chemical physics : PCCP.

[3]  Jian Wang,et al.  Influence of Dynamic Compression on the Phase Transition of Cyclohexane , 2022, Journal of Molecular Liquids.

[4]  H. Mao,et al.  Crystalline C3N3H3 tube (3,0) nanothreads , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Ferg,et al.  Potential facile separation strategy for mixtures of 3- and 4-methylpyridine by employing N,N′-bis(9-phenyl-9-xanthenyl)ethylenediamine as an alternative host compound , 2021, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[6]  Kaiyuan Shi,et al.  Compression Rate-Dependent Crystallization of Pyridine , 2021 .

[7]  Kun Yang,et al.  Phase transitions of carbon tetrachloride under static and dynamic pressures , 2021 .

[8]  Yanchun Li,et al.  Distance makes a difference in crystalline photoluminescence , 2020, Nature Communications.

[9]  Y. Eichen,et al.  Re-entrant supramolecular interactions in inverse-melting α-cyclodextrin·4-methylpyridine·water mixtures: an NMR study. , 2018, Physical chemistry chemical physics : PCCP.

[10]  B. K. Mishra,et al.  Synthesis, Characterization, Solution Behavior, and Density Functional Theory Analysis of Some Pyridinium‐Based Ionic Liquids , 2018 .

[11]  Z. Wang,et al.  Pressure-induced amorphization and crystallization of Choline chloride/Ethylene glycol deep eutectic solvent , 2017 .

[12]  N. Casati,et al.  Kinetic Control of High-Pressure Solid-State Phase Transitions: A Case Study on l-Serine , 2015 .

[13]  M. Probert,et al.  Polymorphism Arising from Differing Rates of Compression of Liquids , 2014 .

[14]  R. Hoffmann,et al.  Benzene under high pressure: a story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase. , 2011, Journal of the American Chemical Society.

[15]  Jing Liu,et al.  Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite , 2010, Proceedings of the National Academy of Sciences.

[16]  M. Torrent,et al.  Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations , 2008 .

[17]  K. Chapman,et al.  Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material. , 2008, Journal of the American Chemical Society.

[18]  E. Mayer,et al.  Compression-rate dependence of the phase transition from hexagonal ice to ice II and/or ice III , 2008 .

[19]  W. Evans,et al.  Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials. , 2007, The Review of scientific instruments.

[20]  W. Evans,et al.  Crystallization of water in a dynamic diamond-anvil cell : Evidence for ice VII-like local order in supercompressed water , 2006 .

[21]  O. A. Odunola,et al.  SYNTHESIS, ELECTRONIC, AND MAGNETIC PROPERTIES OF SOME 3-SUBSTITUTED 2,4-PENTANEDIONATOOXOVANADIUM(IV) COMPLEXES AND THEIR 4-METHYLPYRIDINE ADDUCTS , 2001 .

[22]  T. Teyler,et al.  Suppression of hippocampal slice excitability by 2-, 3-, and 4-methylpyridine. , 2001, Ecotoxicology and environmental safety.

[23]  J. C. Otero,et al.  Vibrational spectrum of 3-methyl and 4-methylpyridine , 1998 .

[24]  P. Pruzan Pressure effects on the hydrogen bond in ice up to 80 GPa , 1994 .

[25]  Y. Ohashi,et al.  Reversible thermal phase transition in crystalline (β‐cyanoethyl)bis(dimethylglyoximato)(4‐methylpyridine)colbalt(III) , 1988 .

[26]  G. Braathen,et al.  Molecular mechanism determining phase transitions in the 4-methyl-pyridine crystal , 1986 .

[27]  G. Braathen,et al.  Rotational dynamics of the methyl group in the 4-methyl pyridine crystal , 1986 .

[28]  A. Heyns,et al.  Effect of pressure on the Raman spectra of solids. 2. Pyridine , 1985 .

[29]  W. Boyes,et al.  Neurophysiological consequences of acute exposure to methylpyridines. , 1985, Fundamental and applied toxicology : official journal of the Society of Toxicology.

[30]  A. Schweig,et al.  Crystal structure and charge density of 4‐methylpyridine (C6H7N) at 120 K , 1985 .

[31]  Thomas G. Spiro,et al.  Resonance enhancement in the ultraviolet Raman spectra of aromatic amino acids , 1985 .

[32]  Stanley Block,et al.  Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar , 1975 .

[33]  A. V. Sechkarev,et al.  Manifestation of dipo le-di pole intermolecular forces in organic compounds , 1968 .

[34]  J.H.S. Green,et al.  Vibrational spectra of monosubstituted pyridines , 1963 .

[35]  Yanming Ma,et al.  Hydrogen‐rich superconductors at high pressures , 2018 .

[36]  Thomas C. Fitzgibbons,et al.  Benzene-derived carbon nanothreads. , 2015, Nature materials.

[37]  Zhenxian Liu,et al.  Raman and infrared spectroscopy of pyridine under high pressure , 2010 .

[38]  F. Fillaux,et al.  The crystal structure of 4-methyl pyridine at 4.5 K , 1990 .

[39]  R. M. Barrer,et al.  Sorption in the β-phases of transition metal(II) tetra-(4-methylpyridine) thiocyanates and related compounds , 1969 .

[40]  B. Bak,et al.  Complete determination of the structure of pyridine by microwave spectra , 1958 .