Fracture of magnesium matrix nanocomposites - A review

[1]  M. Gupta,et al.  Strengthening and toughening mechanisms of Mg matrix composites reinforced with specific spatial arrangement of in-situ TiB2 nanoparticles , 2020, Composites Part B: Engineering.

[2]  A. Salandari-Rabori,et al.  Microstructural evolution and mechanical properties of thermomechanically processed AZ31 magnesium alloy reinforced by micro-graphite and nano-graphene particles , 2020 .

[3]  M. Gupta,et al.  Fe3O4 Nanoparticle-Reinforced Magnesium Nanocomposites Processed via Disintegrated Melt Deposition and Turning-Induced Deformation Techniques , 2019 .

[4]  Zhao-hui Wang,et al.  Defects in graphene nanoplatelets and their interface behavior to reinforce magnesium alloys , 2019, Applied Surface Science.

[5]  J. Jia,et al.  Fracture mechanism of nano- and submicron-SiCp/Mg composite during room temperature tensile test: Interaction between double sized particles and dislocations , 2019, Journal of Alloys and Compounds.

[6]  Xiaoqiang Li,et al.  Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy , 2019, Journal of Alloys and Compounds.

[7]  Hongxia Wang,et al.  Simultaneously improving the strength and ductility of extruded bimodal size SiCp/AZ61 composites: Synergistic effect of micron/nano SiCp and submicron Mg17Al12 precipitates , 2019, Materials Science and Engineering: A.

[8]  Xinyu Geng,et al.  As-cast magnesium AM60-based hybrid nanocomposite containing alumina fibres and nanoparticles: Microstructure and tensile behavior , 2017, Materials Science and Engineering: A.

[9]  M. Gupta,et al.  Enhancing Mechanical Response of Monolithic Magnesium Using Nano-NiTi (Nitinol) Particles , 2018, Metals.

[10]  M. Gupta,et al.  Enhancement of thermal, mechanical, ignition and damping response of magnesium using nano-ceria particles , 2018, Ceramics International.

[11]  Xiaojun Wang,et al.  Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction , 2018, Materials Science and Engineering: A.

[12]  Michael K Danquah,et al.  Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations , 2018, Beilstein journal of nanotechnology.

[13]  Yong Liu,et al.  Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets , 2018 .

[14]  Zhao-hui Wang,et al.  Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites , 2018 .

[15]  M. Gupta,et al.  Synthesis and Mechanical Response of NiTi SMA Nanoparticle Reinforced Mg Composites Synthesized through Microwave Sintering Process , 2018 .

[16]  Yang Bai,et al.  Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg–8Sn–4Zn–2Al Alloys , 2017, Acta Metallurgica Sinica (English Letters).

[17]  M. Gupta,et al.  Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles , 2017 .

[18]  K. Palanikumar,et al.  Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites , 2017 .

[19]  Xiaojun Wang,et al.  Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets , 2017 .

[20]  M. Gupta,et al.  Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates , 2017 .

[21]  Xiaojun Wang,et al.  Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties , 2016, Scientific Reports.

[22]  M. Gupta,et al.  Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates , 2016 .

[23]  T. Srivatsan,et al.  Nano-ZnO Particles’ Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy , 2016 .

[24]  N. Al-Aqeeli,et al.  Microwave Sintered Magnesium Nanocomposite: Hybrid (Y2O3+Ni) Na-No-Size Reinforcement and Tensile Properties , 2016 .

[25]  M. Gupta,et al.  Reinforcing Low-Volume Fraction Nano-TiN Particulates to Monolithical, Pure Mg for Enhanced Tensile and Compressive Response , 2016, Materials.

[26]  M. Gupta,et al.  Magnesium nanocomposite: Effect of melt dispersion of different oxides nano particles , 2016 .

[27]  F. Pan,et al.  High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets , 2016 .

[28]  Y. Liu,et al.  Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO , 2016 .

[29]  S. Sankaranarayanan,et al.  Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties , 2015 .

[30]  W. Wong,et al.  Magnesium-Based Nanocomposites: Lightweight Materials of the Future , 2015 .

[31]  G. Han,et al.  Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs , 2015 .

[32]  M. Gupta,et al.  Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications , 2015 .

[33]  M. Gupta,et al.  Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications , 2015 .

[34]  S. Suwas,et al.  Nano-ZnO particle addition to monolithic magnesium for enhanced tensile and compressive response , 2014 .

[35]  Chao Yang,et al.  Investigating aluminum alloy reinforced by graphene nanoflakes , 2014 .

[36]  J. Wei,et al.  Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites , 2014 .

[37]  M. Gupta,et al.  Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates , 2014 .

[38]  K. Nie,et al.  Microstructure and mechanical properties of SiCp/Mg–Al–Zn composites containing Mg17Al12 phases processed by low-speed extrusion , 2014 .

[39]  S. Suwas,et al.  Using heat treatment effects and EBSD analysis to tailor microstructure of hybrid Mg nanocomposite for enhanced overall mechanical response , 2014 .

[40]  B. Yilbas,et al.  Study of comparative effectiveness of thermally stable nanoparticles on high temperature deformability of wrought AZ31 alloy , 2014 .

[41]  M. Gupta,et al.  Effect of Carbon Nanotube on High-Temperature Formability of AZ31 Magnesium Alloy , 2014, Journal of Materials Engineering and Performance.

[42]  S. Suwas,et al.  Effect of nanoscale boron carbide particle addition on the microstructural evolution and mechanical response of pure magnesium , 2014 .

[43]  S. Suwas,et al.  Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates , 2014 .

[44]  C. Jia,et al.  Enhanced strength in bulk graphene–copper composites , 2014 .

[45]  K. P. Rao,et al.  Hot deformation mechanisms, microstructure and texture evolution in extruded AZ31–nano-alumina composite , 2014 .

[46]  M. Gupta,et al.  Enhancing the Ductility of Mg-(5.6Ti+3Al) Composite Using Nano-B4C Addition and Heat Treatment , 2013 .

[47]  W. Wong,et al.  Influence of nano-alumina and sub-micron copper on mechanical properties of magnesium alloy AZ31 , 2013 .

[48]  S. Suwas,et al.  Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg–5.6Ti composite , 2013 .

[49]  Q. B. Nguyen,et al.  Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nano-sized Al2O3 particulates and Ca , 2013 .

[50]  V. Shim,et al.  Dynamic tensile response of magnesium nanocomposites and the effect of nanoparticles , 2013 .

[51]  S. Tjong Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets , 2013 .

[52]  W. Wong,et al.  Effect of Addition of Nano-Al2O3 and Copper Particulates and Heat Treatment on the Tensile Response of AZ61 Magnesium Alloy , 2013 .

[53]  Y. Liu,et al.  Effects of carbon nanotubes on the microstructure and mechanical properties of the wrought Mg–2.0Zn alloy , 2013 .

[54]  M. Gupta,et al.  Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method , 2013, Materials.

[55]  J. Chan,et al.  Carbon nanotube addition to concentrated magnesium alloy AZ81: Enhanced ductility with occasional significant increase in strength , 2013 .

[56]  T. Srivatsan,et al.  Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue , 2013, Journal of Materials Engineering and Performance.

[57]  K. Oh-ishi,et al.  Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy , 2012 .

[58]  M. Gupta,et al.  High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites , 2012 .

[59]  M. Gupta,et al.  Deformation behaviour of Mg/Y2O3 nanocomposite at elevated temperatures , 2012 .

[60]  S. Suwas,et al.  Asymmetric and symmetric rolling of magnesium: Evolution of microstructure, texture and mechanical properties , 2012 .

[61]  A. Hamouda,et al.  Microstructure and Mechanical Properties of Mg-5Nb Metal-Metal Composite Reinforced with Nano SiC Ceramic Particles , 2012 .

[62]  M. Gupta,et al.  Effect of individual and combined addition of micro/nano-sized metallic elements on the microstructure and mechanical properties of pure Mg , 2012 .

[63]  Baoping Zhang,et al.  Preparation and characterization of a new biomedical Mg–Zn–Ca alloy , 2012 .

[64]  M. Gupta,et al.  Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium , 2011 .

[65]  J. Chan,et al.  Enhanced mechanical response of magnesium alloy ZK60A containing Si3N4 nanoparticles , 2011 .

[66]  Q. B. Nguyen,et al.  Development of new magnesium based alloys and their nanocomposites , 2011 .

[67]  J. Chan,et al.  Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles , 2011 .

[68]  M. Tan,et al.  Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites , 2011 .

[69]  J. Chan,et al.  The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91 , 2011 .

[70]  J. Chan,et al.  Enhancing strength and hardness of AZ31B through simultaneous addition of nickel and nano-Al2O3 particulates , 2011 .

[71]  J. Chan,et al.  An investigation into the capability of unconventional amount of aluminum and nano-alumina to alter the mechanical response of magnesium , 2011, Journal of Materials Science.

[72]  M. J. Gándara,et al.  RECENT GROWING DEMAND FOR MAGNESIUM IN THE AUTOMOTIVE INDUSTRY RAST , 2011 .

[73]  H. Dieringa Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review , 2011 .

[74]  S. Joshi,et al.  Hierarchical magnesium nano-composites for enhanced mechanical response , 2010 .

[75]  S. Suwas,et al.  Room-temperature equal channel angular extrusion of pure magnesium , 2010 .

[76]  M. Gupta,et al.  Enhancing mechanical response of AZ31B using Cu + nano-Al2O3 addition , 2010 .

[77]  M. Gupta,et al.  Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions , 2010 .

[78]  Zhenru Gao,et al.  Effects of age heat treatment and thermomechanical processing on microstructure and mechanical behavior of LAZ1010 Mg alloy , 2009 .

[79]  W. Poole,et al.  Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles , 2009 .

[80]  T. Srivatsan,et al.  On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B , 2009 .

[81]  M. Gupta,et al.  Microstructure and Mechanical Characteristics of AZ31B/Al2O3 Nanocomposite with Addition of Ca , 2009 .

[82]  M. Gupta,et al.  Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates , 2008 .

[83]  M. Gupta,et al.  Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates , 2008 .

[84]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[85]  M. Gupta,et al.  Ductility improvement and fatigue studies in Mg-CNT nanocomposites , 2008 .

[86]  Z. Fucheng,et al.  Microstructure evolution and deformation mechanism change in 0.98C–8.3Mn–0.04N steel during compressive deformation , 2007 .

[87]  M. Barnett Twinning and the ductility of magnesium alloys Part I: “Tension” twins , 2007 .

[88]  R. Batra,et al.  Instability strain and shear band spacing in simple tensile/compressive deformations of thermoviscoplastic materials , 2007 .

[89]  S. Yao,et al.  Surface analysis and oxidation behavior of Y-ion implanted AZ31 magnesium alloys , 2007 .

[90]  M. Surappa,et al.  Processing and properties of Al–Li–SiCp composites , 2007 .

[91]  M. Gupta,et al.  Enhancing strength and ductility of Mg/SiC composites using recrystallization heat treatment , 2006 .

[92]  M. Gupta,et al.  Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique , 2006 .

[93]  G. Gottstein,et al.  Texture effects on plastic deformation of magnesium , 2005 .

[94]  M. Gupta,et al.  Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement , 2005 .

[95]  Xing Yang Liu,et al.  Review of recent studies in magnesium matrix composites , 2004 .

[96]  S. Frankland,et al.  Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli , 2003 .

[97]  M. Gupta,et al.  Enhancing modulus and ductility of Mg/SiC composite through judicious selection of extrusion temperature and heat treatment , 2003 .

[98]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[99]  Manoj Gupta,et al.  Development of high strength magnesium copper based hybrid composites with enhanced tensile properties , 2003 .

[100]  M. K. Surappa,et al.  Aluminium matrix composites: Challenges and opportunities , 2003 .

[101]  H. Mcqueen,et al.  Twinning, dynamic recovery and recrystallization in hot worked Mg–Al–Zn alloy , 2002 .

[102]  W. Fei,et al.  Effect of heat treatment on dislocation states and work hardening behaviors of SiCw/6061Al composite , 2002 .

[103]  Angel Rubio,et al.  Mechanical properties of carbon nanotubes: a fiber digest for beginners , 2002 .

[104]  M. Gupta,et al.  Development of high strength magnesium based composites using elemental nickel particulates as reinforcement , 2002 .

[105]  M. Gupta,et al.  Development of a novel magnesium / nickel composite with improved mechanical properties , 2002 .

[106]  N. Sobczak,et al.  Wetting and bonding strength in Al/Al2O3 system , 2002 .

[107]  J. Llorca Fatigue of particle-and whisker-reinforced metal-matrix composites , 2002 .

[108]  Yi-long Bai,et al.  Size-dependent inelastic behavior of particle-reinforced metal–matrix composites , 2001 .

[109]  N. Chawla,et al.  Mechanical Behavior of Particle Reinforced Metal Matrix Composites , 2001 .

[110]  Lirong Zhao,et al.  Effect of annealing treatment on the stress corrosion cracking behavior of SiC whisker reinforced aluminum composite , 2001 .

[111]  C. H. Lee,et al.  Fabrication, microstructures, and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy , 1997 .

[112]  B. Dodd,et al.  Experimental study on the formation of shear bands and effect of microstructure in Al-2124/SiCp composites under dynamic compression , 1994 .

[113]  F. Jones,et al.  Effect of particulate agglomeration and the residual stress state on the modulus of filled resin. Part II: Moduli of untreated sand and glass bead filled composites , 1990 .

[114]  M. Yoo Slip, twinning, and fracture in hexagonal close-packed metals , 1981 .