A radial basis collocation method for pricing American options under regime-switching jump-diffusion models

The Markovian regime-switching paradigm has become one of the prevailing models in mathematical finance. It is now widely known that under the regime-switching model, the market is incomplete and so the option valuation problem in this framework will be a challenging task of considerable importance for market practitioners and academia. Our concern here is to solve the pricing problem for American options in a Markov-modulated jump-diffusion model, based on a meshfree approach using radial basis functions. In this respect, we solve a set of coupled partial integro-differential equations with the free boundary feature by expanding the solution vector in terms of radial basis functions and then collocating the resulting system of equations at some pre-specified points. This method exhibits a superlinear order of convergence in space and a linear order in time and also has an acceptable speed in comparison with some existing methods. We will compare our results with some recently proposed approaches.

[1]  Abdul Q. M. Khaliq,et al.  New Numerical Scheme for Pricing American Option with Regime-Switching , 2009 .

[2]  Tak Kuen Siu,et al.  A game theoretic approach to option valuation under Markovian regime-switching models , 2008 .

[3]  Eisuke Kita,et al.  Options valuation by using radial basis function approximation , 2007 .

[4]  Y. C. Hon,et al.  A quasi-radial basis functions method for American options pricing , 2002 .

[5]  G. Fasshauer,et al.  Using meshfree approximation for multi‐asset American options , 2004 .

[6]  Elisabeth Larsson,et al.  Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform , 2008 .

[7]  Simon Hubbert,et al.  A Numerical Study of Radial Basis Function Based Methods for Options Pricing under the One Dimension Jump-diffusion Model , 2010, ArXiv.

[8]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[9]  Kyriakos Chourdakis,et al.  Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps , 2002 .

[10]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[11]  G. Russo,et al.  Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .

[12]  Robert J. Elliott,et al.  Pricing Options Under a Generalized Markov-Modulated Jump-Diffusion Model , 2007 .

[13]  James D. Hamilton Regime switching models , 2010 .

[14]  Ahmad Golbabai,et al.  Radial basis functions with application to finance: American put option under jump diffusion , 2012, Math. Comput. Model..

[15]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[16]  Kyriakos Chourdakis Switching Levy Models in Continuous Time: Finite Distributions and Option Pricing , 2005 .

[17]  D. A. Voss,et al.  Using Meshfree Approximation for Multi-Asset American Option Problems , 2003 .

[18]  S. Jaimungal,et al.  Stepping Through Fourier Space , 2008 .

[19]  Svetlana Boyarchenko,et al.  American Options in Regime-Switching Models , 2006, SIAM J. Control. Optim..

[20]  Elisabeth Larsson,et al.  Improved radial basis function methods for multi-dimensional option pricing , 2008 .

[21]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[22]  S. Jaimungal,et al.  Option pricing with regime switching Lévy processes using Fourier space time stepping , 2007 .

[23]  Vasant Naik,et al.  Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns , 1993 .

[24]  C.M.C. Roque,et al.  Numerical experiments on optimal shape parameters for radial basis functions , 2009 .

[25]  Sebastian Jaimungal,et al.  Fourier Space Time-Stepping for Option Pricing With Levy Models , 2007 .

[26]  Muddun Bhuruth,et al.  A new radial basis functions method for pricing American options under Merton's jump-diffusion model , 2012, Int. J. Comput. Math..

[27]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[28]  Hailiang Yang,et al.  Option Pricing in a Jump-Diffusion Model with Regime Switching , 2009 .

[29]  Robert J. Elliott,et al.  Option pricing and Esscher transform under regime switching , 2005 .

[30]  Rogemar S. Mamon,et al.  Hidden Markov Models In Finance , 2007 .

[31]  E FasshauerG,et al.  Using meshfree approximation for multi-asset American option problems , 2004 .

[32]  J. Lau,et al.  Pricing Participating Products under a Generalized Jump-Diffusion Model , 2008 .

[33]  Y. Huang,et al.  Methods for Pricing American Options under Regime Switching , 2011, SIAM J. Sci. Comput..