Fountain Codes under Maximum Likelihood Decoding

This dissertation focuses on fountain codes under maximum likelihood (ML) decoding. First LT codes are considered under a practical and widely used ML decoding algorithm known as inactivation decoding. Different analysis techniques are presented to characterize the decoding complexity. Next an upper bound to the probability of decoding failure of Raptor codes under ML decoding is provided. Then, the distance properties of an ensemble of fixed-rate Raptor codes with linear random outer codes are analyzed. Finally, a novel class of fountain codes is presented, which consists of a parallel concatenation of a block code with a linear random fountain code.

[1]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[2]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[3]  Gerhard Bauch,et al.  Inactivation decoding analysis for LT codes , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[6]  Marco Chiani,et al.  Performance versus overhead for fountain codes over Fq , 2010, IEEE Communications Letters.

[7]  Amin Shokrollahi,et al.  Theory and applications of Raptor codes , 2009 .

[8]  Weifa Liang,et al.  Performance Analysis of Raptor Codes Under Maximum Likelihood Decoding , 2015, IEEE Transactions on Communications.

[9]  Alexander Barg,et al.  Minimal Vectors in Linear Codes , 1998, IEEE Trans. Inf. Theory.

[10]  Irina Adjudeanu,et al.  Codes correcteurs d'erreurs LDPC structurés , 2010 .

[11]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[12]  Devavrat Shah,et al.  ARQ for network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[13]  Gerhard Bauch,et al.  Distance Spectrum of Fixed-Rate Raptor Codes With Linear Random Precoders , 2015, IEEE Journal on Selected Areas in Communications.

[14]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[15]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[16]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[17]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[18]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[19]  Richard M. Karp,et al.  Finite length analysis of LT codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[20]  Digital Video Broadcasting (DVB); Interaction channel for Satellite Master Antenna TV (SMATV) distribution systems; Guidelines for versions based on satellite and coaxial sections , 1997 .

[21]  Amin Shokrollahi,et al.  New model for rigorous analysis of LT-codes , 2006, 2006 IEEE International Symposium on Information Theory.

[22]  Peter Vary,et al.  Analysis of LT Codes over Finite Fields under Optimal Erasure Decoding , 2013, IEEE Communications Letters.

[23]  Alexander Barg,et al.  Concatenated codes with fixed inner code and random outer code , 2001, IEEE Trans. Inf. Theory.

[24]  Andrew M. Odlyzko,et al.  Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.

[25]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[26]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[27]  Digital Video Broadcasting (dvb); Ip Datacast over Dvb-h: Content Delivery Protocols Annex a (informative): Overview of the Blocking Algorithm for Fec Encoding Id 0 ......................55 Annex B (informative): Algorithm to Select Repair Mechanism for File Delivery Service .................56 Anne , 2006 .

[28]  Marco Chiani,et al.  Bounds on the Error Probability of Block Codes over the q-Ary Erasure Channel , 2013, IEEE Transactions on Communications.

[29]  P. Maymounkov Online codes , 2002 .

[30]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[31]  Gianluigi Liva,et al.  Parallel Concatenation of Non-Binary Linear Random Fountain Codes with Maximum Distance Separable Codes , 2019 .

[32]  Gerhard Bauch,et al.  On the weight distribution of fixed-rate Raptor codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[33]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[34]  Marco Chiani,et al.  Maximum Likelihood Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design , 2012, IEEE Transactions on Communications.

[35]  Gerhard Bauch,et al.  Enhancing the LT Component of Raptor Codes for Inactivation Decoding , 2015 .

[36]  Gerhard Bauch,et al.  LT code design for inactivation decoding , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[37]  Giuliano Garrammone,et al.  On Fragmentation for Fountain Codes , 2013 .

[38]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[39]  라센소렌,et al.  Multi-stage code generator and decoder for communication systems , 2002 .

[40]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[41]  Gianluigi Liva,et al.  On the Concatenation of Non-Binary Random Linear Fountain Codes with Maximum Distance Separable Codes , 2011, 2011 IEEE International Conference on Communications (ICC).

[42]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.

[43]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[44]  Masoud Ardakani,et al.  On Raptor Code Design for Inactivation Decoding , 2012, IEEE Transactions on Communications.

[45]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[46]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[47]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[48]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[49]  Amin Shokrollahi,et al.  Analysis of the Second Moment of the LT Decoder , 2009, IEEE Transactions on Information Theory.

[50]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[51]  Digital Video Broadcasting (dvb); Upper Layer Fec for Dvb Systems , .

[52]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[53]  David Declercq,et al.  Fountain Coding via Multiplicatively Repeated Non-Binary LDPC Codes , 2012, IEEE Transactions on Communications.

[54]  Birgit Schotsch,et al.  Rateless coding in the finite length regime , 2014 .

[55]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[56]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[57]  John J. Metzner,et al.  An Improved Broadcast Retransmission Protocol , 1984, IEEE Trans. Commun..

[58]  Shenghao Yang,et al.  Finite-length analysis of BATS codes , 2013, NetCod.

[59]  Thomas Stockhammer,et al.  Raptor Forward Error Correction Scheme for Object Delivery , 2007, RFC.

[60]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[61]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[62]  Roberto Garello,et al.  On the Asymptotic Performance of Hamming Product Codes , 2001 .

[63]  Nazanin Rahnavard,et al.  Rateless Codes With Unequal Error Protection Property , 2007, IEEE Transactions on Information Theory.

[64]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[65]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[66]  Gerhard Bauch,et al.  Bounds on the Error Probability of Raptor Codes , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).