On nonoscillating integrals for computing inhomogeneous Airy functions
暂无分享,去创建一个
[1] Nico Temme,et al. Steepest descent paths for integrals defining the modified Bessel functions of imaginary order , 1993 .
[2] Roy G. Gordon,et al. An algorithm for the evaluation of the complex Airy functions , 1979 .
[3] Roderick Wong,et al. Asymptotic approximations of integrals , 1989, Classics in applied mathematics.
[4] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[5] Soo-Y. Lee,et al. The inhomogeneous Airy functions, Gi(z) and Hi(z) , 1980 .
[6] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[7] R. S. Scorer,et al. NUMERICAL EVALUATION OF INTEGRALS OF THE FORM I=∫x1x2f(x)eiϕ(x)dx AND THE TABULATION OF THE FUNCTION Gi(z)=(1/π)∫0∞sin(uz+13u3) du , 1950 .
[8] D. E. Amos. Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.
[9] Walter Gautschi,et al. NUMERICAL EVALUATION OF SPECIAL FUNCTIONS , 2001 .
[10] Allan J. MacLeod,et al. Computation of inhomogeneous Airy functions , 1994 .
[11] Robert M. Corless,et al. Numerical evaluation of airy functions with complex arguments , 1992 .
[12] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[13] D. E. Amos,et al. A remark on Algorithm 644: “A portable package for Bessel functions of a complex argument and nonnegative order” , 1995, TOMS.
[14] Ronald F. Boisvert,et al. Guide to Available Mathematical Software. , 1984 .
[15] F. Olver. Asymptotics and Special Functions , 1974 .