Conformation of tripod Metal Templates in CH3C(CH2PPh2)3MLn (n = 2, 3): Neural Networks in Conformational Analysis†

The conformational space spanned by tripod metal templates CH3C(CH2Ph2)3M is analysed on the basis of the solid-state structures of 82 tripodCo templates in compounds tripodCoL2 and tripodCoL3. Systematic analysis, including the techniques of conformational space group scatter graphs, principal-component analysis, and partial least squares, reveals a series of basic regularities: The torsion of the phenyl groups is strongly linked to the torsional skew of the bicyclooctane-type framework of the chelate cage. For one sense of this skew there are two classes of low-energy conformation that differ by the helicity of the phenyl arrangement and by the degree of torsional skew in the chelate backbone. From the scatter graphs it is evident that a change in helicity may occur by one- or by two-ring flip mechanisms. The basic regularities found by the above methods are also evident from the analysis of the same data by a neural network approach. The fact that these regularities are found for tripodCoL2 and tripodCoL3, irrespective of the widely different coligands L and crystal environments, means that the conformation of the tripod metal templates is governed by the forces acting within them and not so much by the forces imposed on them by their individual chemical or crystal environment. It is shown that the classifications, although derived from a data basis only containing Co compounds, are characteristic for tripod metal templates irrespective of the specific metal involved.

[1]  S. Peng,et al.  NITROGEN-CONTAINING TRIPODAL PHOSPHINE LIGANDS , 1992 .

[2]  Mark J. Burk,et al.  Neue chirale Tripod-Phosphane mit C3-Symmetrie† , 1990 .

[3]  T. Seitz,et al.  Tripod-Liganden mit zwei verschiedenen Donorgruppen: Synthese und Koordinationsverhalten von H3CCH(CH2PPh2)2(CH2OH) / Tripod Ligands with Two Different Donor Groups: Synthesis and Coordination of H3CC(CH2PPh2)2(CH2OH) , 1994 .

[4]  Shiuh-Tzung Liu,et al.  Stereospecific Ligand Substitutions in Manganese(I) Complexes , 1995 .

[5]  T. Klein,et al.  Chirale tripodliganden: Die eintopfreaktion MeC(CH2PPh2)3 → MeC(CH2P(Ph)(R))3; Zwischenstufen, diastereoselektive kontrolle und komplexchemie , 1993 .

[6]  W. Schroer,et al.  Mustererkennung mit Fuzzy-Logic , 1994 .

[7]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[8]  L. Sacconi,et al.  Transition Metal Complexes with cyclo‐Triphosphorus (η3‐P3) and tetrahedro‐Tetraphosphorus (η1‐P4) Ligands , 1982 .

[9]  R Langridge,et al.  Improvements in protein secondary structure prediction by an enhanced neural network. , 1990, Journal of molecular biology.

[10]  G. Huttner,et al.  Eine einfache synthese von tripod-liganden H3CC(CH2PAr2)3: Anwendungsbreite und komplexchemie , 1994 .

[11]  G. Huttner,et al.  Fe(NCMe) 2+3‐Komplexe von chiralen Tripodliganden mit drei verschiedenen Donorgruppen: Dynamik und Struktur , 1995 .

[12]  M. Peruzzini,et al.  Tripodal polyphosphine ligands in homogeneous catalysis. 1. Hydrogenation and hydroformylation of alkynes and alkenes assisted by organorhodium complexes with MeC(CH2PPh2)3 , 1990 .

[13]  M. Peruzzini,et al.  Tripodal polyphosphine ligands control selectivity of organometallic reactions , 1992 .

[14]  G. Huttner,et al.  Funktionalisierte Tripod‐Liganden: Synthese und Koordination von Tris[(diphenylphosphanyl)methyl]methan , 1994 .

[15]  O. Walter,et al.  Synthese und Komplexchemie funktionalisierter Tripod-Liganden RC(CH2PPh2)3† , 1995 .

[16]  A. Guy Orpen Structural systematics in molecular inorganic chemistry , 1993 .

[17]  E. Muetterties,et al.  Idealized polytopal forms. Description of real molecules referenced to idealized polygons or polyhedra in geometric reaction path form , 1974 .

[18]  S. Knudsen,et al.  Neural network detects errors in the assignment of mRNA splice sites. , 1990, Nucleic acids research.

[19]  G. Huttner,et al.  Tripodliganden mit drei verschiedenen Donorgruppen: Synthese und Koordination von CH3C(CH2PR2)(CH2PR′2)(CH2PR"2) / Tripod Ligands with Three Different Donor Groups: Synthesis and Coordination of CH3C(CH2PR2)(CH2PR′2)(CH2PR''2) , 1993 .

[20]  A. Hirsch,et al.  Soluble, Oligomeric Bridged Phthalocyaninatoiron(II) Complexes , 1990 .

[21]  J. Dunitz,et al.  Can statistical analysis of structural parameters from different crystal environments lead to quantitative energy relationships , 1988 .

[22]  S. Peng,et al.  Unusual tripodal ligands. Synthesis of 2,2-bis(diphenylphosphinomethyl)-1-phenylthiopropane and its group VI complexes , 1989 .

[23]  V. Gramlich,et al.  Synthesis and x-ray crystal structure of an optically pure tripodal C3-symmetric tritertiary phosphine bearing chirality on phosphorus , 1991 .

[24]  G. Huttner,et al.  Chirale Tripodliganden mit Phosphor‐ und Schwefeldonoren. Synthese und Komplexchemie , 1996 .

[25]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[26]  H. Brunner,et al.  Handbook of enantioselective catalysis: With transition metal compounds , 1993 .

[27]  Shiuh-Tzung Liu,et al.  Intramolecular bridging ligand exchange in [2,2-bis((phenylthio)methyl)-1-(diphenylphosphino)propane]palladium(II) chloride , 1990 .

[28]  A. Orpen,et al.  Structural systematics. Part 5. Conformation and bonding in the chiral metal complexes [M(η5-C5R5)(XO)Z(PPh3)] , 1993 .

[29]  P. Y. Chou,et al.  Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. , 1974, Biochemistry.

[30]  Jack D. Dunitz,et al.  From crystal statics to chemical dynamics , 1983 .

[31]  K. Mislow,et al.  Stereochemical consequences of correlated rotation in molecular propellers , 1976 .

[32]  T. Seitz,et al.  Chirale Tripod‐Liganden: Ein neuer Syntheseweg zu chiralen, C1‐symmetrischen Neopentyltris(phosphan)‐Liganden H3CC[CH2P(Ra)2][CH2P(Rb)][CH2P(Rc)2] , 1994 .

[33]  G. Huttner,et al.  Ein neuartiger chiraler Synthesebaustein mit Neopentangerüst: Chemo‐enzymatische Darstellung von (R)‐CH3C(CH2OSO2CF3)(CH2Cl)(CH2Br) , 1994 .

[34]  J. Zupan,et al.  Neural Networks in Chemistry , 1993 .

[35]  J. Collman,et al.  Principles and applications of organotransition metal chemistry , 1980 .

[36]  M. Karplus,et al.  Protein secondary structure prediction with a neural network. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Orpen,et al.  Structural systematics. Part 4. Conformations of the diphosphine ligands in M2(µ-Ph2PCH2PPh2) and M(Ph2PCH2CH2PPh2) complexes , 1992 .

[38]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[39]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[40]  S. Brunak,et al.  Protein secondary structure and homology by neural networks The α‐helices in rhodopsin , 1988 .

[41]  T. Seitz,et al.  Der kürzeste Weg zu C1-symmetrischen, chiralen tripod-Liganden mit Neopentan-Grundgerüst / The Shortest Way to C1-Symmetrical, Chiral Tripod Ligands with Neopentane Backbone , 1995 .

[42]  Benny Lautrup,et al.  A novel approach to prediction of the 3‐dimensional structures of protein backbones by neural networks , 1990, NIPS.

[43]  M. Fritz,et al.  Paramagnetische 17-Elektronen-[Tripod-Cobalt-Allyl]+-Komplexe; Synthese, Struktur und katalytische Anwendung , 1993 .

[44]  T. Seitz,et al.  Elektrophile Aktivierung von OH-Gruppen in Phosphor-organischen Verbindungen - Eine Anwendung für Phosphan-Borane / Electrophilic Activation of OH Groups in Organophosphorus Compounds - An Application of Phosphane Boranes , 1994 .

[45]  S. Peng,et al.  Tripodal ligands with mixed donors. Synthesis of 2-diphenylphosphinomethyl-2-phenylthiometryl-1-methoxypropane (PSO) and its transition metal complexes , 1990 .

[46]  M. Fritz,et al.  Synthese funktionalisierter tipod-Liganden: Aufbau, Veresterung und Koordinationsfähigkeit von HOCH2C (CH2PPh2)3☆ , 1994 .

[47]  G. Huttner,et al.  Ambiphile Tripod-Komplexe: Synthese und Komplexchemie langkettiger funktionalisierter Tripod-Liganden RC(CH2PPh2)3 mit R = Pentyl oder 8-Nonenyl , 1994 .

[48]  L. Zsolnai,et al.  Synthesis of a New Optically Active Triphosphine with a Neopentane Backbone , 1995 .

[49]  M. Burk,et al.  New chiral phospholanes; Synthesis, characterization, and use in asymmetric hydrogenation reactions , 1991 .