Maximum-likelihood estimation for multi-aspect multi-baseline SAR interferometry of urban areas

Abstract The reconstruction of digital surface models (DSMs) of urban areas from interferometric synthetic aperture radar (SAR) data is a challenging task. In particular the SAR inherent layover and shadowing effects need to be coped with by sophisticated processing strategies. In this paper, a maximum-likelihood estimation procedure for the reconstruction of DSMs from multi-aspect multi-baseline InSAR imagery is proposed. In this framework, redundant as well as contradicting observations are exploited in a statistically optimal way. The presented method, which is especially suited for single-pass SAR interferometers, is examined using test data consisting of experimental airborne millimeterwave SAR imagery. The achievable accuracy is evaluated by comparison to LiDAR-derived reference data. It is shown that the proposed estimation procedure performs better than a comparable non-statistical reconstruction method.

[1]  Michael Eineder,et al.  TanDEM-X calibrated Raw DEM generation , 2012 .

[2]  Mihai Datcu,et al.  Road detection in dense urban areas using SAR imagery and the usefulness of multiple views , 2002, IEEE Trans. Geosci. Remote. Sens..

[3]  A. J. Wilkinson,et al.  Topographic mapping with multiple antenna SAR interferometry: a Bayesian model-based approach , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[4]  Uwe Stilla,et al.  Advanced high resolution SAR interferometry of urban areas with airborne millimetrewave radar , 2013 .

[5]  Helmut Essen Airborne Remote Sensing at Millimeter Wave Frequencies , 2010 .

[6]  Paolo Gamba,et al.  Rapid mapping of high resolution SAR scenes , 2009 .

[7]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  Joseph L. Mundy,et al.  Characterization of 3-D Volumetric Probabilistic Scenes for Object Recognition , 2012, IEEE Journal of Selected Topics in Signal Processing.

[9]  Marco Diani,et al.  Simulated analysis and optimization of a three-antenna airborne InSAR system for topographic mapping , 1999, IEEE Trans. Geosci. Remote. Sens..

[10]  Uwe Stilla,et al.  Compressive Sensing Based Layover Separation in Airborne Single-Pass Multi-Baseline InSAR Data , 2013, IEEE Geoscience and Remote Sensing Letters.

[11]  Helmut Essen,et al.  High Resolution MEMPHIS SAR Data Processing and Applications , 2012 .

[12]  M. Schwabisch,et al.  A fast and efficient technique for SAR interferogram geocoding , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[13]  Uwe Soergel,et al.  Potential and limits of InSAR data for building reconstruction in built-up areas , 2003 .

[14]  Xiao Xiang Zhu,et al.  Integration of tomographic SAR inversion and PSI for operational use , 2012 .

[15]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[16]  Gabriel Vasile,et al.  General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Helmut Essen,et al.  MEMPHIS-a fully polarimetric experimental radar , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[18]  Uwe Stilla,et al.  Adaptive Multilooking of Airborne Single-Pass Multi-Baseline InSAR Stacks , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Michael Eineder,et al.  Efficient simulation of SAR interferograms of large areas and of rugged terrain , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  Olaf Hellwich,et al.  Geocoding SAR interferograms by least squares adjustment , 2000 .

[21]  Yuanyuan Wang,et al.  Retrieval of phase history parameters from distributed scatterers in urban areas using very high resolution SAR data , 2012 .

[22]  Alessandro Parizzi,et al.  Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results , 2011, IEEE Geoscience and Remote Sensing Letters.

[23]  K. Koch Introduction to Bayesian Statistics , 2007 .

[24]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[25]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[26]  S. Hinz,et al.  Road Extraction from SAR Multi-Aspect Data Supported by a Statistical Context-Based Fusion , 2007, 2007 Urban Remote Sensing Joint Event.

[27]  J. R. Fellerhoff,et al.  Elevation correction and building extraction from interferometric SAR imagery , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[28]  Nesrine Chehata,et al.  A graph cut optimization guided by 3D-features for surface height recovery , 2009 .

[29]  Paolo Gamba,et al.  Rapid Mapping Using Airborne and Satellite SAR Images , 2010 .

[30]  Andreas Wendel,et al.  Automated photogrammetry for three-dimensional models of urban spaces , 2012 .

[31]  Michael Eineder,et al.  Geometrical Fusion of Multitrack PS Point Clouds , 2012, IEEE Geoscience and Remote Sensing Letters.

[32]  R. Bamler,et al.  Phase statistics of interferograms with applications to synthetic aperture radar. , 1994, Applied optics.

[33]  Helene Oriot,et al.  Circular SAR imagery for urban remote sensing , 2008 .

[34]  Uwe Stilla,et al.  AUTOMATIC REGISTRATION OF LASER POINT CLOUDS OF URBAN AREAS , 2007 .

[35]  Uwe Stilla,et al.  Towards Airborne Single Pass Decimeter Resolution SAR Interferometry over Urban Areas , 2011, PIA.

[36]  R. Goossens,et al.  Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area – a comparative study , 2013 .

[37]  Uwe Stilla,et al.  Potential of airborne single-pass millimeterwave InSAR data for individual tree recognition , 2013 .

[38]  David Small,et al.  A comparison of phase to height conversion methods for SAR interferometry , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[39]  Lorenzo Bruzzone,et al.  Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Uwe Soergel,et al.  Building Recognition From Multi-Aspect High-Resolution InSAR Data in Urban Areas , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Gerhard Krieger,et al.  Multistatic sar satellite formations: potentials and challenges , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[42]  Helmut Essen,et al.  Processing of MEMPHIS millimeter wave multi-baseline InSAR data , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[43]  Vito Pascazio,et al.  Joint Statistical Distribution of Multi-Baseline SAR Interferograms , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[44]  Uwe Stilla,et al.  Fusion of airborne multi-aspect InSAR data by simultaneous backward geocoding , 2011, 2011 Joint Urban Remote Sensing Event.

[45]  Ya-Qiu Jin,et al.  Automatic Reconstruction of Building Objects From Multiaspect Meter-Resolution SAR Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Howard A. Zebker,et al.  Accurate estimation of correlation in InSAR observations , 2005, IEEE Geoscience and Remote Sensing Letters.

[47]  Michael Eineder,et al.  A maximum-likelihood estimator to simultaneously unwrap, geocode, and fuse SAR interferograms from different viewing geometries into one digital elevation model , 2005, IEEE Transactions on Geoscience and Remote Sensing.