Behaviour of the Brascamp–Lieb constant

Recent progress in multilinear harmonic analysis naturally raises questions about the local behaviour of the best constant (or bound) in the general Brascamp--Lieb inequality as a function of the underlying linear transformations. In this paper we prove that this constant is continuous, but is not in general differentiable.

[1]  W. Beckner Inequalities in Fourier analysis , 1975 .

[2]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[3]  T. Tao,et al.  Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities , 2005, math/0505691.

[4]  Convolution estimates for singular measures and some global nonlinear Brascamp—Lieb inequalities , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Jonathan Bennett,et al.  Aspects of Multilinear Harmonic Analysis Related to Transversality , 2014, 1405.5369.

[6]  Avi Wigderson,et al.  Algorithmic aspects of Brascamp-Lieb inequalities , 2016, ArXiv.

[7]  Stefán Ingi Valdimarsson Geometric Brascamp–Lieb Has the Optimal Best Constant , 2011 .

[8]  Jonathan Bennett,et al.  Global Nonlinear Brascamp–Lieb Inequalities , 2013 .

[9]  T. Tao,et al.  The Brascamp–Lieb Inequalities: Finiteness, Structure and Extremals , 2005, math/0505065.

[10]  Larry Guth,et al.  Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three , 2015, 1512.01565.

[11]  S. Herr,et al.  Convolutions of singular measures and applications to the Zakharov system , 2010, 1009.3250.

[12]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[13]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2016, Geometric and Functional Analysis.

[14]  F. Barthe On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.

[15]  Sharp Fourier type and cotype with respect to compact semisimple Lie groups , 2003, math/0312244.

[16]  Jonathan Bennett,et al.  Stability of the Brascamp-Lieb constant and applications , 2015, 1508.07502.

[17]  Stefán Ingi Valdimarsson The Brascamp–Lieb Polyhedron , 2010, Canadian Journal of Mathematics.

[18]  Neal Bez,et al.  Some nonlinear Brascamp–Lieb inequalities and applications to harmonic analysis , 2009, 0906.2064.

[19]  Anthony Carbery,et al.  A non-linear generalisation of the Loomis-Whitney inequality and applications , 2005 .

[20]  Terence Tao,et al.  On the multilinear restriction and Kakeya conjectures , 2005, math/0509262.

[21]  Ruixiang Zhang The endpoint perturbed Brascamp–Lieb inequalities with examples , 2015, 1510.09132.

[22]  Ciprian Demeter,et al.  Mean value estimates for Weyl sums in two dimensions , 2015, J. Lond. Math. Soc..

[23]  A. Klein,et al.  Sharp inequalities for Weyl operators and Heisenberg groups , 1978 .

[24]  E. Lieb Gaussian kernels have only Gaussian maximizers , 1990 .