Scaling limits of random outerplanar maps with independent link-weights

The scaling limit of large simple outerplanar maps was established by Caraceni using a bijection due to Bonichon, Gavoille and Hanusse. The present paper introduces a new bijection between outerplanar maps and trees decorated with ordered sequences of edge-rooted dissections of polygons. We apply this decomposition in order to provide a new, short proof of the scaling limit that also applies to the general setting of first-passage percolation. We obtain sharp tail-bounds for the diameter and recover the asymptotic enumeration formula for outerplanar maps. Our methods also enable us treat subclasses such as bipartite outerplanar maps.

[1]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[2]  George Szekeres,et al.  Distribution of labelled trees by diameter , 1983 .

[3]  J. L. Gall,et al.  Scaling limits for the peeling process on random maps , 2014, 1412.5509.

[4]  J. Ambjorn,et al.  Multi-point functions of weighted cubic maps , 2014, 1408.3040.

[5]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[6]  Nicolas Curien,et al.  The CRT is the scaling limit of random dissections , 2013, Random Struct. Algorithms.

[7]  Konstantinos Panagiotou,et al.  On properties of random dissections and triangulations , 2008, SODA '08.

[8]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[9]  Philippe Flajolet,et al.  The distribution of height and diameter in random non‐plane binary trees , 2010, Random Struct. Algorithms.

[10]  Svante Janson,et al.  Sub-Gaussian tail bounds for the width and height of conditioned Galton--Watson trees , 2010, 1011.4121.

[11]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[12]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[13]  Jérémie Bettinelli Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.

[14]  Konstantinos Panagiotou,et al.  Scaling Limits of Random Graphs from Subcritical Classes , 2014, 1411.1865.

[15]  Alessandra Caraceni The Scaling Limit of Random Outerplanar Maps , 2014, 1405.1971.

[16]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[17]  J. L. Gall,et al.  First-passage percolation and local modifications of distances in random triangulations , 2015, Annales scientifiques de l'École normale supérieure.

[18]  HEIGHT AND DIAMETER OF BROWNIAN TREE , 2015, 1503.05014.

[19]  B'en'edicte Haas,et al.  Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees , 2010, 1003.3632.

[20]  Guy Louchard,et al.  Random Sampling from Boltzmann Principles , 2002, ICALP.

[21]  C. Abraham Rescaled bipartite planar maps converge to the Brownian map , 2013, 1312.5959.

[22]  Sigurdur Orn Stef'ansson,et al.  Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.

[23]  K. Panagiotou,et al.  Scaling limits of random Pólya trees , 2015, 1502.07180.