Physical vapor transport crystal growth of ZnO

Physical vapor transport (PVT) growth of mm-size, polycrystalline ZnO has been demonstrated at temperatures exceeding 1600°C under air at atmospheric pressure. Scanning electron microscopy (SEM) analysis revealed the growth of grains and microcrystals with strong faceted morphologies suggesting near-equilibrium growth conditions. In addition, a temperature-dependent formula for the O2 sticking coefficient has been developed to predict the maximum growth rate of PVT ZnO. Combining this formula with an existing one-dimensional analytical model for PVT growth of bulk AlN, the value of the growth rate of PVT ZnO as a function of temperature and oxygen vapor partial pressure has been studied. This analysis predicts that growth rates in the order of 1mm/h could be theoretically achieved using the PVT method under non-stoichiometric oxygen-rich vapor pressures and temperatures exceeding 1600°C.

[1]  V. Prasad,et al.  Modeling and simulation of AlN bulk sublimation growth systems , 2004 .

[2]  D. Look,et al.  Magnetic resonance studies of ZnO , 2001 .

[3]  H. Shibata,et al.  Crystal growth of ZnO , 2002 .

[4]  D. C. Reynolds,et al.  Electrical properties of bulk ZnO , 1998 .

[5]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[6]  Mitsuru Sato,et al.  Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method , 2004 .

[7]  Melvin R. Baer,et al.  Exponential 6 parameterization for the JCZ3-EOS , 1998 .

[8]  J. Edgar,et al.  A Global Growth Rate Model for Aluminum Nitride Sublimation , 2002 .

[9]  E. Weaver Vapor phase growth of ZnO single crystals , 1967 .

[10]  Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl2 as transport agents , 1985 .

[11]  P. Dryburgh The estimation of maximum growth rate for aluminium nitride crystals grown by direct sublimation , 1992 .

[12]  S. Ha,et al.  Integrated process modeling and experimental validation of silicon carbide sublimation growth , 2003 .

[13]  Michael J. Callahan,et al.  High Quality Hydrothermal ZnO Crystals , 1999 .

[14]  T. Uematsu,et al.  The precipitation of ZnO single crystals in molten hydrous KOH solutions , 1982 .

[15]  Y. Makarov,et al.  Theoretical Model for Analysis and Optimization of Group III-Nitrides Growth by Molecular Beam Epitaxy , 1996 .

[16]  A. Searcy,et al.  Sublimation and Thermodynamic Properties of Zinc Oxide , 1964 .

[17]  T. Sota,et al.  Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal , 2003 .

[18]  J. Hirth,et al.  The sublimation of basal surfaces of zinc oxide , 1975 .

[19]  Alain Lusson,et al.  ZnO growth by chemically assisted sublimation , 1998 .

[20]  K. F. Nielsen Growth of ZnO single crystals by the vapor phase reaction method , 1968 .

[21]  W. Jost,et al.  Diffusion in Solids, Liquids, Gases , 1952, Zeitschrift für Physikalische Chemie.

[22]  D. C. Reynolds,et al.  Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy , 2002 .

[23]  Weizhuo Zhong,et al.  Growth mechanism and growth habit of oxide crystals , 1999 .

[24]  Crystal growth of ZnO by chemical transport , 1988 .

[25]  G. A. Slack,et al.  Growth of high purity AlN crystals , 1976 .

[26]  D. C. Reynolds,et al.  High Quality Hydrothermal ZnO Crystals , 1998 .

[27]  Y. Makarov,et al.  On mechanisms of sublimation growth of AlN bulk crystals , 2000 .