Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 thin films on si wafer prepared by fast cooling immediately after sputter deposition

We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O<sub>3</sub> (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr<sub>0.5</sub>, Ti<sub>0.5</sub>)O<sub>3</sub> films showed reasonably large piezoelectric coefficients, e<sub>31,f</sub> = ~-11 C/m<sup>2</sup>, with remarkably small dielectric constants, ε<sub>r</sub> = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.

[1]  D. Berlincourt,et al.  Piezoelectric transducer materials , 1965 .

[2]  Yoshihiro Tomita,et al.  Preparation of epitaxial Pb(ZrxTi1−x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties , 1989 .

[3]  Budai,et al.  Domain formation and strain relaxation in epitaxial ferroelectric heterostructures. , 1994, Physical review. B, Condensed matter.

[4]  Joseph T. Evans,et al.  Voltage shifts and imprint in ferroelectric capacitors , 1995 .

[5]  W. Pompe,et al.  Relative coherency strain and phase transformation history in epitaxial ferroelectric thin films , 1996 .

[6]  O. Madelung,et al.  Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series , 1965 .

[7]  K. Uchino,et al.  Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary , 1998 .

[8]  Paul Muralt,et al.  Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications , 1999 .

[9]  Shin-ichi Tanaka,et al.  Ferroelectric Properties of Pb(Zi, Ti)O3 Capacitor with Thin SrRuO3 Films within Both Electrodes , 2000 .

[10]  D. Akai,et al.  Fabrication of Pb(Zr, Ti)O3 films on epitaxial γ-Al2O3(001)/Si(001) substrates , 2003 .

[11]  A. Tagantsev,et al.  Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors , 2003 .

[12]  Nicolas Ledermann,et al.  {1 0 0}-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties , 2003 .

[13]  Hidetoshi Kotera,et al.  Measurement of transverse piezoelectric properties of PZT thin films , 2003 .

[14]  Masayoshi Esashi,et al.  Characteristics on PZT (Pb(ZrxTi1−x)O3) films for piezoelectric angular rate sensor , 2004 .

[15]  K. Saito,et al.  Spontaneous polarization change with Zr∕(Zr+Ti) ratios in perfectly polar-axis-orientated epitaxial tetragonal Pb(Zr,Ti)O3 films , 2004 .

[16]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[17]  P. Muralt,et al.  Is there a better material for thin film BAW applications than A1N? , 2005, IEEE Ultrasonics Symposium, 2005..

[18]  J. Ouyang,et al.  Epitaxial Pb(Zr,Ti)O3 Capacitors on Si by Liquid Delivery Metalorganic Chemical Vapor Deposition , 2005 .

[19]  Intrinsic Ferroelectric Properties of Strained Tetragonal PbZr0.2Ti0.8O3 Obtained on Layer–by–Layer Grown, Defect–Free Single–Crystalline Films , 2006, cond-mat/0601335.

[20]  E. Fujii,et al.  Preparation of (001) oriented Pb(Zr,Ti)O3 thin films and their piezoelectric applications , 2007, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics.

[21]  Shu-Yi Zhang,et al.  Ferroelectric properties of Pb(Mn1/3Nb2/3)O3−Pb(Zr,Ti)O3 thin films epitaxially grown on (001)MgO substrates , 2008 .

[22]  Matthijn Dekkers,et al.  Ferroelectric properties of epitaxial Pb(Zr,Ti)O3 thin films on silicon by control of crystal orientation , 2009 .

[23]  H. Funakubo,et al.  Crystal structure and electrical property comparisons of epitaxial Pb(Zr,Ti)O3 thick films grown on (100)CaF2 and (100)SrTiO3 substrates , 2009 .

[24]  Srinivas Tadigadapa,et al.  Piezoelectric MEMS sensors: state-of-the-art and perspectives , 2009 .

[25]  D. Briand,et al.  Epitaxial piezoelectric MEMS on silicon , 2010 .

[26]  Sergei V. Kalinin,et al.  Designing piezoelectric films for micro electromechanical systems , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  M. Dekkers,et al.  Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films , 2011 .

[28]  Danick Briand,et al.  The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film , 2011 .

[29]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[30]  S. Priya,et al.  Stress-controlled Pb(Zr0.52Ti0.48)O3 thick films by thermal expansion mismatch between substrate and Pb(Zr0.52Ti0.48)O3 film , 2011 .

[31]  Xiaotang Hu,et al.  Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. , 2012, Lab on a chip.

[32]  K. Wasa,et al.  Thin-Film Piezoelectric Materials For a Better Energy Harvesting MEMS , 2012, Journal of Microelectromechanical Systems.

[33]  S. Bedair,et al.  PZT‐Based Piezoelectric MEMS Technology , 2012 .

[34]  H. Kotera,et al.  Highly polarized single-c-domain single-crystal Pb(Mn,Nb)O3-PZT thin films , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  Chang-Beom Eom,et al.  Thin-film piezoelectric MEMS , 2012 .

[36]  Hisao Suzuki,et al.  Effect of Thermal Stress on Orientation Control of CSD-Derived Pb(Zr0.53Ti0.47)O3 Thin Films , 2012 .

[37]  Hiroshi Funakubo,et al.  Epitaxial PZT films for MEMS printing applications , 2012 .