On Maximum Depth and Related Classifiers
暂无分享,去创建一个
[1] G. Wang,et al. Convergence of depth contours for multivariate datasets , 1997 .
[2] K. Mosler. Multivariate Dispersion, Central Regions, and Depth , 2002 .
[3] Juan Romo,et al. Depth-based classification for functional data , 2005, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.
[4] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[5] Jean Meloche,et al. Multivariate density estimation by probing depth , 1997 .
[6] C. Croux,et al. Robust linear discriminant analysis using S‐estimators , 2001 .
[7] D. Donoho,et al. Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .
[8] H. Oja. Descriptive Statistics for Multivariate Distributions , 1983 .
[9] Peter Rousseeuw,et al. Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..
[10] P. Mahalanobis. On the generalized distance in statistics , 1936 .
[11] Cun-Hui Zhang,et al. The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[12] G. E. Peterson,et al. Control Methods Used in a Study of the Vowels , 1951 .
[13] Rebecka Jörnsten. Clustering and classification based on the L 1 data depth , 2004 .
[14] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[15] V. Koltchinskii. M-estimation, convexity and quantiles , 1997 .
[16] Regina Y. Liu,et al. Regression depth. Commentaries. Rejoinder , 1999 .
[17] Regina Y. Liu,et al. A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .
[18] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[19] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[20] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[21] Steven N. MacEachern,et al. Classification via kernel product estimators , 1998 .
[22] Andreas Christmann,et al. Measuring overlap in binary regression , 2001 .
[23] D. Pollard. Convergence of stochastic processes , 1984 .
[24] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[25] J. Tukey. Mathematics and the Picturing of Data , 1975 .
[26] Anil K. Ghosh,et al. OPTIMAL SMOOTHING IN KERNEL DISCRIMINANT ANALYSIS , 2004 .
[27] W. Fung,et al. High Breakdown Estimation for Multiple Populations with Applications to Discriminant Analysis , 2000 .
[28] Thorsten Joachims,et al. Comparison between various regression depth methods and the support vector machine to approximate the minimum number of missclassifications , 2002, Comput. Stat..
[29] P. Rousseeuw,et al. A fast algorithm for the minimum covariance determinant estimator , 1999 .
[30] Cluster Analysis Based on Data Depth , 2000 .
[31] R. Serfling. A Depth Function and a Scale Curve Based on Spatial Quantiles , 2002 .
[32] P. Chaudhuri,et al. Sign Tests in Multidimension: Inference Based on the Geometry of the Data Cloud , 1993 .
[33] Mia Hubert,et al. Fast and robust discriminant analysis , 2004, Comput. Stat. Data Anal..
[34] P. Rousseeuw,et al. Bivariate location depth , 1996 .
[35] I. Mizera. On depth and deep points: a calculus , 2002 .
[36] R. Serfling,et al. General notions of statistical depth function , 2000 .
[37] P. Chaudhuri. On a geometric notion of quantiles for multivariate data , 1996 .
[38] D. Nolan. Asymptotics for multivariate trimming , 1992 .
[39] P. Chaudhuri,et al. On data depth and distribution-free discriminant analysis using separating surfaces , 2005 .
[40] Richard A. Johnson,et al. Applied Multivariate Statistical Analysis , 1983 .