Lessons and challenges in land change modeling derived from synthesis of cross-case comparisons.

This chapter presents the lessons and challenges in land change modeling that emerged from years of reflection and numerous panel discussions at scientific conferences concerning a collaborative cross-case comparison in which the authors have participated. We summarize the lessons as nine challenges grouped under three themes: mapping, modeling, and learning. The mapping challenges are: to prepare data appropriately, to select relevant resolutions, and to differentiate types of land change. The modeling challenges are: to separate calibration from validation, to predict small amounts of change, and to interpret the influence of quantity error. The learning challenges are: to use appropriate map comparison measurements, to learn about land change processes, and to collaborate openly. To quantify the pattern validation of predictions of change, we recommend that modelers report as a percentage of the spatial extent the following measurements: misses, hits, wrong hits and false alarms. The chapter explains why the lessons and challenges are essential for the future research agenda concerning land change modeling.

[1]  Hao Chen,et al.  Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable , 2010, Landscape Ecology.

[2]  Robert Gilmore Pontius,et al.  The total operating characteristic to measure diagnostic ability for multiple thresholds , 2014, Int. J. Geogr. Inf. Sci..

[3]  Robert Gilmore Pontius,et al.  Measuring the temporal instability of land change using the Flow matrix , 2013, Int. J. Geogr. Inf. Sci..

[4]  G. Box Robustness in the Strategy of Scientific Model Building. , 1979 .

[5]  R. G. Pontius,et al.  Detecting important categorical land changes while accounting for persistence , 2004 .

[6]  Jean-Christophe Castella,et al.  Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam , 2007 .

[7]  A. Veldkamp,et al.  CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica , 1996 .

[8]  Bryan C. Pijanowski,et al.  Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States , 2005, Int. J. Geogr. Inf. Sci..

[9]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[10]  Jean-Christophe Castella,et al.  Agrarian transition and lowland-upland interactions in mountain areas in northern Vietnam: application of a multi-agent simulation model , 2005 .

[11]  K. Kok,et al.  Evaluating impact of spatial scales on land use pattern analysis in Central America , 2001 .

[12]  B. Pijanowski,et al.  Using neural networks and GIS to forecast land use changes: a Land Transformation Model , 2002 .

[13]  A. Veldkamp,et al.  Multi - scale modelling of land use change dynamics in Ecuador , 1999 .

[14]  Robert Gilmore Pontius,et al.  Quantity, exchange, and shift components of difference in a square contingency table , 2014 .

[15]  Eric Koomen,et al.  Comparing the input, output, and validation maps for several models of land change , 2008 .

[16]  R. Pontius,et al.  Accuracy Assessment for a Simulation Model of Amazonian Deforestation , 2007 .

[17]  Robert Gilmore Pontius,et al.  Assessing a predictive model of land change using uncertain data , 2010, Environ. Model. Softw..

[18]  R. Gil Pontius,et al.  Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica , 2001 .

[19]  Kor de Jong,et al.  A method to analyse neighbourhood characteristics of land use patterns , 2004, Comput. Environ. Urban Syst..

[20]  J. Bouma,et al.  A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use , 1999 .

[21]  Eric Koomen,et al.  Land-use modelling in planning practice , 2011 .

[22]  Robert Gilmore Pontius,et al.  Comparison of the structure and accuracy of two land change models , 2005, Int. J. Geogr. Inf. Sci..

[23]  Piet Rietveld,et al.  LAND USE SCANNER: An integrated GIS based model for long term projections of land use in urban and rural areas , 1999, J. Geogr. Syst..

[24]  Kasper Kok,et al.  A method and application of multi-scale validation in spatial land use models , 2001 .

[25]  Hans Visser,et al.  The Map Comparison Kit , 2006, Environ. Model. Softw..

[26]  Jean-Christophe Castella,et al.  Constructing a Common Representation of Local Institutions and Land Use Systems through Simulation-Gaming and Multiagent Modeling in Rural Areas of Northern Vietnam: The SAMBA-Week Methodology , 2003 .

[27]  K. Seto,et al.  Advancing Land Change Modeling: Opportunities and Research Requirements , 2013 .

[28]  J. Cheylan,et al.  Un modèle intégré pour explorer les trajectoires d'utilisation de l'espace , 2009, ARIMA J..

[29]  Robert Gilmore Pontius,et al.  Recommendations for using the relative operating characteristic (ROC) , 2013, Landscape Ecology.

[30]  Robert Gilmore Pontius,et al.  Comparison of Three Maps at Multiple Resolutions: A Case Study of Land Change Simulation in Cho Don District, Vietnam , 2011 .

[31]  Martin Paegelow,et al.  Land change modelling: moving beyond projections , 2013, Int. J. Geogr. Inf. Sci..

[32]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[33]  Wouter Buytaert,et al.  An open and extensible framework for spatially explicit land use change modelling: the lulcc R package , 2015 .

[34]  Tran Ngoc Trung,et al.  Participatory Simulation of Land-Use Changes in the Northern Mountains of Vietnam: the Combined Use of an Agent-Based Model, a Role-Playing Game, and a Geographic Information System , 2005 .

[35]  R. White,et al.  Environment Explorer: Spatial Support System for the Integrated Assessment of Socio-Economic and Environmental Policies in the Netherlands , 2003 .

[36]  Xiubing Li,et al.  Urban land expansion and arable land loss in China - a case study of Beijing-Tianjin-Hebei region , 2005 .

[37]  William J. McConnell,et al.  Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar , 2004 .

[38]  V. Diogo,et al.  Exploring the potential of reed as a bioenergy crop in the Netherlands , 2013 .

[39]  R. Pontius,et al.  Influence of classification errors on Intensity Analysis of land changes in southern Nigeria , 2015 .

[40]  Robert Gilmore Pontius,et al.  Uncertainty in the difference between maps of future land change scenarios , 2009 .

[41]  Robert Gilmore Pontius,et al.  Influence of carbon mapping and land change modelling on the prediction of carbon emissions from deforestation , 2012, Environmental Conservation.

[42]  Ton C M de Nijs,et al.  Constructing land-use maps of the Netherlands in 2030. , 2004, Journal of environmental management.

[43]  Robert Gilmore Pontius,et al.  Range of Categorical Associations for Comparison of Maps with Mixed Pixels , 2009 .

[44]  Christopher D. Lippitt,et al.  Can Error Explain Map Differences Over Time? , 2006 .

[45]  R. Pontius,et al.  Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment , 2011 .

[46]  Rheyna M. Laney,et al.  Disaggregating Induced Intensification for Land-Change Analysis: A Case Study from Madagascar , 2002 .

[47]  P. Verburg,et al.  Projecting land use transitions at forest fringes in the Philippines at two spatial scales , 2004, Landscape Ecology.

[48]  Robert Gilmore Pontius,et al.  Behavior-based aggregation of land categories for temporal change analysis , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[49]  Jana Hoymann Spatial Allocation of Future Residential Land Use in the Elbe River Basin , 2010 .

[50]  Robert Gilmore Pontius,et al.  Map errors that could account for deviations from a uniform intensity of land change , 2013, Int. J. Geogr. Inf. Sci..

[51]  Keith C. Clarke,et al.  Spatial Differences in Multi‐Resolution Urban Automata Modeling , 2004, Trans. GIS.

[52]  Robert Gilmore Pontius,et al.  Useful techniques of validation for spatially explicit land-change models , 2004 .

[53]  William Rand,et al.  Path dependence and the validation of agent‐based spatial models of land use , 2005, Int. J. Geogr. Inf. Sci..

[54]  Elisabete A. Silva,et al.  Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal , 2002 .

[55]  Noah Goldstein,et al.  Brains Vs. Brawn – Comparative Strategies For The Calibration Of A Cellular Automata – Based Urban Growth Model , 2003 .