CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation

[1]  W. Jackson,et al.  Enteroviruses Remodel Autophagic Trafficking through Regulation of Host SNARE Proteins to Promote Virus Replication and Cell Exit. , 2018, Cell reports.

[2]  Honglin Luo,et al.  Enteroviral Infection Inhibits Autophagic Flux via Disruption of the SNARE Complex to Enhance Viral Replication. , 2018, Cell reports.

[3]  Honglin Luo,et al.  N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection , 2018, Journal of Virology.

[4]  J. Cui,et al.  Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells. , 2017, Molecular cell.

[5]  A. Ballabio,et al.  Molecular definitions of autophagy and related processes , 2017, The EMBO journal.

[6]  L. Tafforeau,et al.  Influenza virus protein PB1-F2 interacts with CALCOCO2 (NDP52) to modulate innate immune response. , 2017, The Journal of general virology.

[7]  R. Mahieux,et al.  Distinct Contributions of Autophagy Receptors in Measles Virus Replication , 2017, Viruses.

[8]  J. Carette,et al.  PLA2G16 represents a switch between entry and clearance of Picornaviridae , 2017, Nature.

[9]  V. Chow,et al.  Enterovirus 71 infection of motor neuron-like NSC-34 cells undergoes a non-lytic exit pathway , 2016, Scientific Reports.

[10]  C. Behl,et al.  Ubiquitin-Dependent And Independent Signals In Selective Autophagy. , 2016, Trends in cell biology.

[11]  C. Coyne,et al.  Unc93b Induces Apoptotic Cell Death and Is Cleaved by Host and Enteroviral Proteases , 2015, PloS one.

[12]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[13]  Honglin Luo,et al.  Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis , 2015, Cell Death and Differentiation.

[14]  E. Wimmer,et al.  Phosphatidylserine Vesicles Enable Efficient En Bloc Transmission of Enteroviruses , 2015, Cell.

[15]  P. Lőw,et al.  The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy , 2014, BioMed research international.

[16]  Honglin Luo,et al.  Dominant-negative function of the C-terminal fragments of NBR1 and SQSTM1 generated during enteroviral infection , 2014, Cell Death and Differentiation.

[17]  A. Segall,et al.  Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers , 2014, PLoS pathogens.

[18]  M. Alirezaei,et al.  In Vivo Ablation of Type I Interferon Receptor from Cardiomyocytes Delays Coxsackieviral Clearance and Accelerates Myocardial Disease , 2014, Journal of Virology.

[19]  L. Platanias,et al.  Beta Interferon Regulation of Glucose Metabolism Is PI3K/Akt Dependent and Important for Antiviral Activity against Coxsackievirus B3 , 2014, Journal of Virology.

[20]  P. Fisher,et al.  Enterovirus 2Apro Targets MDA5 and MAVS in Infected Cells , 2014, Journal of Virology.

[21]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[22]  J. Bergelson,et al.  Echovirus 7 Entry into Polarized Caco-2 Intestinal Epithelial Cells Involves Core Components of the Autophagy Machinery , 2013, Journal of Virology.

[23]  L. Zitvogel,et al.  Autophagy and cellular immune responses. , 2013, Immunity.

[24]  Honglin Luo,et al.  Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling , 2013, Autophagy.

[25]  M. Prevost,et al.  Species‐specific impact of the autophagy machinery on Chikungunya virus infection , 2013, EMBO reports.

[26]  S. Bloor,et al.  LC3C, Bound Selectively by a Noncanonical LIR Motif in NDP52, Is Required for Antibacterial Autophagy , 2012, Molecular cell.

[27]  M. Alirezaei,et al.  Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. , 2012, Cell host & microbe.

[28]  Honglin Luo,et al.  Interplay between the cellular autophagy machinery and positive-stranded RNA viruses , 2012, Acta biochimica et biophysica Sinica.

[29]  W. Jackson,et al.  Human Rhinovirus 2 Induces the Autophagic Pathway and Replicates More Efficiently in Autophagic Cells , 2011, Journal of Virology.

[30]  P. Kim,et al.  The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway , 2011, Autophagy.

[31]  Elizabeth Delorme-Axford,et al.  The Coxsackievirus B 3Cpro Protease Cleaves MAVS and TRIF to Attenuate Host Type I Interferon and Apoptotic Signaling , 2011, PLoS pathogens.

[32]  Kay Hofmann,et al.  Selective autophagy: ubiquitin-mediated recognition and beyond , 2010, Nature Cell Biology.

[33]  R. Sumpter,et al.  Autophagy protects against Sindbis virus infection of the central nervous system. , 2010, Cell host & microbe.

[34]  S. Bloor,et al.  The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria , 2009, Nature Immunology.

[35]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[36]  B. McManus,et al.  Autophagosome Supports Coxsackievirus B3 Replication in Host Cells , 2008, Journal of Virology.

[37]  Zhijian J. Chen,et al.  Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3 , 2005, Cell.

[38]  K. Kirkegaard,et al.  Subversion of Cellular Autophagosomal Machinery by RNA Viruses , 2005, PLoS biology.

[39]  L. Reed,et al.  A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS , 1938 .