Monochromatic and Zero-Sum Sets of Nondecreasing Diameter
暂无分享,去创建一个
[1] Paul Erdös,et al. Monochromatic and zero-sum sets of nondecreasing diameter , 1995, Discret. Math..
[2] David J. Grynkiewicz,et al. On some developments of the Erdős–Ginzburg–Ziv Theorem II , 2003 .
[3] Yair Caro,et al. Zero-sum problems - A survey , 1996, Discret. Math..
[4] Daniel Schaal,et al. A zero-sum theorem , 2003, J. Comb. Theory, Ser. A.
[5] David J. Grynkiewicz,et al. On Four Colored Sets with Nondecreasing Diameter and the Erds-Ginzburg-Ziv Theorem , 2002, J. Comb. Theory, Ser. A.
[6] Roger Crocker,et al. A theorem in additive number theory , 1969 .
[7] Andrew Schultz. On a modification of a problem of Bialostocki, Erdos, and Lefmann , 2006, Discret. Math..
[8] David J. Grynkiewicz,et al. Monochromatic and Zero-Sum Sets of Nondecreasing Modified Diameter , 2006, Electron. J. Comb..
[9] David J. Grynkiewicz,et al. On four color monochromatic sets with nondecreasing diameter , 2005, Discret. Math..
[10] David J. Grynkiewicz,et al. On a partition analog of the Cauchy-Davenport theorem , 2005 .
[11] Arie Bialostocki,et al. On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..
[12] A. Ziv,et al. Theorem in the Additive Number Theory , 2022 .
[13] Arie Bialostocki,et al. On constrained 2-Partitions of monochromatic sets and generalizations in the sense of Erdos-Ginzburg-Ziv , 2005, Ars Comb..