暂无分享,去创建一个
[1] C. W. Clenshaw. A note on the summation of Chebyshev series , 1955 .
[2] G. Forsythe. Generation and Use of Orthogonal Polynomials for Data-Fitting with a Digital Computer , 1957 .
[3] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[4] H. Tal-Ezer,et al. An accurate and efficient scheme for propagating the time dependent Schrödinger equation , 1984 .
[5] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[6] L. Reichel. Newton interpolation at Leja points , 1990 .
[7] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[8] Ronnie Kosloff,et al. Solution of the time-dependent Liouville-von Neumann equation: dissipative evolution , 1992 .
[9] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[10] R. Coifman,et al. The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.
[11] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[12] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[13] Eter,et al. Faber and Newton Polynomial Integrators for Open-System Density Matrix Propagation , 1998 .
[14] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[15] Anne Greenbaum,et al. Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..
[16] Kesheng Wu,et al. Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..
[17] J. Baglama,et al. FAST LEJA POINTS , 1998 .
[18] Andreas Frommer,et al. Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..
[19] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..
[20] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[21] I. Moret,et al. THE COMPUTATION OF FUNCTIONS OF MATRICES BY TRUNCATED FABER SERIES , 2001 .
[22] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[23] I. Moret,et al. An interpolatory approximation of the matrix exponential based on Faber polynomials , 2001 .
[24] Alicja Smoktunowicz,et al. Backward Stability of Clenshaw's Algorithm , 2002 .
[25] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[26] Roberto Barrio,et al. Rounding error bounds for the Clenshaw and Forsythe algorithms for the evaluation of orthogonal polynomial series , 2002 .
[27] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[28] Mark Embree,et al. The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..
[29] V. Simoncini. Restarted Full Orthogonalization Method for Shifted Linear Systems , 2003 .
[30] P. Novati. A polynomial method based on Fejèr points for the computation of functions of unsymmetric matrices , 2003 .
[31] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[32] L. Bergamaschi,et al. Interpolating discrete advection-diffusion propagators at Leja sequences , 2004 .
[33] Michiel E. Hochstenbach,et al. Subspace extraction for matrix functions , 2005 .
[34] Elizabeth R. Jessup,et al. A Technique for Accelerating the Convergence of Restarted GMRES , 2005, SIAM J. Matrix Anal. Appl..
[35] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[36] VALERIA SIMONCINI,et al. MATRIX FUNCTIONS , 2006 .
[37] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[38] N. Higham,et al. Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .
[39] R. Hiptmair,et al. Boundary Element Methods , 2021, Oberwolfach Reports.
[40] M. Eiermann,et al. Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .
[41] M. Hochbruck,et al. Rational approximation to trigonometric operators , 2008 .
[42] N. Higham. Functions Of Matrices , 2008 .
[43] Nicholas J. Higham,et al. Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..
[44] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[45] Constantine Bekas,et al. Computation of Large Invariant Subspaces Using Polynomial Filtered Lanczos Iterations with Applications in Density Functional Theory , 2008, SIAM J. Matrix Anal. Appl..
[46] Simon Heybrock,et al. Krylov subspace methods and the sign function: multishifts and deflation in the non-Hermitian case , 2009, 0910.2927.
[47] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[48] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[49] Awad H. Al-Mohy,et al. Computing matrix functions , 2010, Acta Numerica.
[50] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[51] I. Turner,et al. A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .
[52] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[53] L. Reichel,et al. Fractional Tikhonov regularization for linear discrete ill-posed problems , 2011 .
[54] Stefan Güttel,et al. Automated parameter selection for rational Arnoldi approximation of Markov functions , 2011 .
[55] Stefan Güttel,et al. Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..
[56] Mihai Anitescu,et al. Computing f(A)b via Least Squares Polynomial Approximations , 2011, SIAM J. Sci. Comput..
[57] Julien Langou,et al. Any admissible cycle‐convergence behavior is possible for restarted GMRES at its initial cycles , 2011, Numer. Linear Algebra Appl..
[58] Nicholas Hale,et al. An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..
[59] Stefan Güttel,et al. Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions , 2012, Numerische Mathematik.
[60] Gérard Meurant,et al. Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES , 2012, SIAM J. Matrix Anal. Appl..
[61] Pascal Frossard,et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.
[62] Martin J. Gander,et al. PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..
[63] Bernhard Beckermann,et al. Spectral Sets , 2013, 1302.0546.
[64] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[65] A. Ostermann,et al. Comparison of software for computing the action of the matrix exponential , 2014 .
[66] Jun-Feng Yin and Guo-Jian Yin. Restarted Full Orthogonalization Method with Deflation for Shifted Linear Systems , 2014 .
[67] Christian Hoelbling. Lattice QCD: Concepts, Techniques and Some Results , 2014 .
[68] Pierre Vandergheynst,et al. GSPBOX: A toolbox for signal processing on graphs , 2014, ArXiv.
[69] James Demmel,et al. Communication lower bounds and optimal algorithms for numerical linear algebra*† , 2014, Acta Numerica.
[70] Stefan Güttel,et al. Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices , 2014, SIAM J. Matrix Anal. Appl..
[71] Stefan Güttel,et al. Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature , 2014, SIAM J. Matrix Anal. Appl..
[72] A. Ostermann,et al. A residual based error estimate for Leja interpolation of matrix functions , 2014 .
[73] Paolo Novati,et al. Numerical approximation to the fractional derivative operator , 2014, Numerische Mathematik.
[74] DOMINIK L. MICHELS,et al. Exponential integrators for stiff elastodynamic problems , 2014, ACM Trans. Graph..
[75] Nicholas J. Higham,et al. A Catalogue of Software for Matrix Functions. Version 1.0 , 2014 .
[76] G. Meurant,et al. ON THE ADMISSIBLE CONVERGENCE CURVES FOR RESTARTED GMRES , 2014 .
[77] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[78] P. Vandergheynst,et al. Accelerated filtering on graphs using Lanczos method , 2015, 1509.04537.
[79] Yousef Saad,et al. Approximating Spectral Densities of Large Matrices , 2013, SIAM Rev..
[80] Laura Grigori,et al. Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication , 2016, SIAM J. Matrix Anal. Appl..
[81] VLADIMIR DRUSKIN,et al. Near-Optimal Perfectly Matched Layers for Indefinite Helmholtz Problems , 2015, SIAM Rev..
[82] Andreas Frommer,et al. Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions , 2016 .
[83] Marco Caliari,et al. The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential , 2015, SIAM J. Sci. Comput..
[84] Matthias Hein,et al. Clustering Signed Networks with the Geometric Mean of Laplacians , 2016, NIPS.
[85] Gerhard Wellein,et al. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations , 2015, J. Comput. Phys..
[86] Pascal Frossard,et al. Learning Heat Diffusion Graphs , 2016, IEEE Transactions on Signal and Information Processing over Networks.
[87] Awad H. Al-Mohy. A New Algorithm for Computing the Actions of Trigonometricand Hyperbolic Matrix Functions , 2017 .
[88] Daniel B. Szyld,et al. The Radau-Lanczos Method for Matrix Functions , 2017, SIAM J. Matrix Anal. Appl..
[89] Ronald B. Morgan,et al. Weighted Inner Products for GMRES and GMRES-DR , 2017, SIAM J. Sci. Comput..
[90] Svetozar Margenov,et al. Parallel solvers for fractional power diffusion problems , 2017, Concurr. Comput. Pract. Exp..
[91] David Bolin,et al. Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise , 2017, BIT Numerical Mathematics.
[92] M. Schweitzer. Restarting and error estimation in polynomial and extended Krylov subspace methods for the approximation of matrix functions , 2018 .
[93] Pascal Frossard,et al. Distributed Signal Processing via Chebyshev Polynomial Approximation , 2011, IEEE Transactions on Signal and Information Processing over Networks.
[94] Awad H. Al-Mohy. A Truncated Taylor Series Algorithm for Computing the Action of Trigonometric and Hyperbolic Matrix Functions , 2018, SIAM J. Sci. Comput..
[95] Yavor Vutov,et al. Optimal solvers for linear systems with fractional powers of sparse SPD matrices , 2016, Numer. Linear Algebra Appl..
[96] D. Szyld,et al. Block Krylov Subspace Methods for Functions of Matrices II: Modified Block FOM , 2020, SIAM J. Matrix Anal. Appl..
[97] Gang Wu,et al. A shifted block FOM algorithm with deflated restarting for matrix exponential computations , 2018 .
[98] Yoel Shkolnisky,et al. Matrix Chebyshev expansion and its application to eigenspaces recovery , 2015 .
[99] Matrices , 2019, Numerical C.
[100] Anthony P. Austin,et al. Stable Computation of Generalized Matrix Functions via Polynomial Interpolation , 2019, SIAM J. Matrix Anal. Appl..
[101] Yousef Saad,et al. The Eigenvalues Slicing Library (EVSL): Algorithms, Implementation, and Software , 2018, SIAM J. Sci. Comput..
[102] Daniel Kressner,et al. A Krylov Subspace Method for the Approximation of Bivariate Matrix Functions , 2018, Structured Matrices in Numerical Linear Algebra.
[103] Daniel B. Szyld,et al. Block Krylov Subspace Methods for Functions of Matrices II: Modified Block FOM , 2020, SIAM J. Matrix Anal. Appl..
[104] Michele Benzi,et al. Matrix functions in network analysis , 2020, GAMM-Mitteilungen.
[105] Mike A. Botchev,et al. ART: adaptive residual-time restarting for Krylov subspace matrix exponential evaluations , 2018, J. Comput. Appl. Math..
[106] Daniel Kressner,et al. Compress‐and‐restart block Krylov subspace methods for Sylvester matrix equations , 2020, Numer. Linear Algebra Appl..
[107] Stefan Güttel,et al. A comparison of limited-memory Krylov methods for Stieltjes functions of Hermitian matrices , 2020, SIAM J. Matrix Anal. Appl..