Profinite Completions and Canonical Extensions of Heyting Algebras

We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion $\widehat{H}$ of a Heyting algebra H, and characterize the dual space of $\widehat{H}$. We also give a necessary and sufficient condition for the profinite completion of H to coincide with its canonical extension, and provide a new criterion for a variety V of Heyting algebras to be finitely generated by showing that V is finitely generated if and only if the profinite completion of every member of V coincides with its canonical extension. From this we obtain a new proof of a well-known theorem that every finitely generated variety of Heyting algebras is canonical.

[1]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras. Part I , 1998, Stud Logica.

[2]  L. Nachbin Topology and order , 1965 .

[3]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[4]  Brian A. Davey,et al.  A Coalgebraic View of Heyting Duality , 2003, Stud Logica.

[5]  Mai Gehrke,et al.  MONOTONE BOUDED DISTRIBUTIVE LATTICE EXPANSIONS , 2000 .

[6]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[7]  Guram Bezhanishvili,et al.  Varieties of Monadic Heyting Algebras Part II: Duality Theory , 1999, Stud Logica.

[8]  On profinite completions and canonical extensions , 2006 .

[9]  L. E. Ward Partially ordered topological spaces , 1954 .

[10]  G. Hansoul THE STONE-ČECH COMPACTIFICATION OF A POSPACE , 1986 .

[11]  L. Maksimova Pretabular superintuitionist logic , 1972 .

[12]  W. Blok Varieties of interior algebras , 1976 .

[13]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[14]  Mai Gehrke,et al.  Bounded distributive lattice expansions , 2004 .

[15]  A. Chagrov,et al.  Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .

[16]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[17]  Locally finite varieties of Heyting algebras , 2005 .

[18]  W. H. Cornish On H. Priestley's dual of the category of bounded distributive lattices , 1975 .

[19]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[20]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[21]  George Gratzer,et al.  Universal Algebra , 1979 .

[22]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[23]  H. Priestley,et al.  Distributive Lattices , 2004 .