Pointwise monotonicity of heat kernels

In this paper we present an elementary proof of a pointwise radial monotonicity property of heat kernels that is shared by the Euclidean spaces, spheres and hyperbolic spaces. The main result was discovered by Cheeger and Yau in 1981 and rediscovered in special cases during the last few years. It deals with the monotonicity of the heat kernel from special points on revolution hypersurfaces. Our proof hinges on a non straightforward but elementary application of the parabolic maximum principle. As a consequence of the monotonicity property, we derive new inequalities involving classical special functions.

[1]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[2]  A. Córdoba,et al.  A pointwise estimate for fractionary derivatives with applications to partial differential equations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Luis A. Caffarelli,et al.  Non-local Diffusions, Drifts and Games , 2012 .

[4]  Ángel D. Martínez,et al.  Integral representation for fractional Laplace-Beltrami operators , 2017, 1704.06126.

[5]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[6]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[7]  Milan Merkle,et al.  Completely Monotone Functions: A Digest , 2012, 1211.0900.

[8]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[9]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[10]  Barry Simon,et al.  Ultracontractivity and the Heat Kernel for Schrijdinger Operators and Dirichlet Laplacians , 1987 .

[11]  R. Azencott Behavior of diffusion semi-groups at infinity , 1974 .

[12]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[13]  D. V. Widder,et al.  The Laplace Transform , 1943 .

[14]  A. Terras Harmonic Analysis on Symmetric Spaces―Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane , 2013 .

[15]  S. Chang,et al.  Fractional Laplacian in conformal geometry , 2010, 1003.0398.

[16]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[17]  Ángel D. Martínez,et al.  Global well-posedness of critical surface quasigeostrophic equation on the sphere , 2017, 1704.06132.

[18]  Shing-Tung Yau,et al.  A lower bound for the heat kernel , 1981 .

[19]  Shing-Tung Yau,et al.  ON THE UPPER ESTIMATE OF THE HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD , 1981 .

[20]  Ángel D. Martínez,et al.  A pointwise inequality for fractional laplacians , 2015, 1502.01635.

[21]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[22]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[23]  H. Iwaniec Spectral methods of automorphic forms , 2002 .

[24]  M. Kwong,et al.  On Fejér's inequalities for the Legendre polynomials , 2017 .

[25]  Estimates of the spherical and ultraspherical heat kernel , 2013 .

[26]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[27]  P. Stinga,et al.  Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups , 2017, New Developments in the Analysis of Nonlocal Operators.

[28]  T. Szarek,et al.  Sharp estimates of the spherical heat kernel , 2018, Journal de Mathématiques Pures et Appliquées.

[29]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[30]  C. Herz A class of negative-definite functions , 1963 .

[31]  Christopher D. Sogge,et al.  Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds , 1988 .

[32]  S. Bochner Stable laws of probability and completely monotone functions , 1937 .

[33]  The porous medium equation with large initial data on negatively curved Riemannian manifolds , 2017 .