Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime

Direct numerical simulation is used to study the temporal development of single vortex rings at various Reynolds numbers and core thicknesses. Qualitative differences between the evolution of thin- and thick-core rings are observed leading to a correction factor to the classical equation for the ring translational velocity. We compare the obtained linear modal growth rates with previous work, highlighting the role of the wake in triply periodic numerical simulations. The transition from a laminar to a turbulent ring is marked by the rearrangement of the outer core vorticity into a clearly defined secondary structure. The onset of the fully turbulent state is associated with shedding of the structure in a series of hairpin vortices. A Lagrangian particle analysis was performed to determine the ring entrainment and detrainment properties and to investigate the possibility of an axial flow being generated around the circumference of the core region prior to the onset of turbulence.

[1]  Sheila E. Widnall,et al.  The instability of the thin vortex ring of constant vorticity , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  S. Wiggins,et al.  An analytical study of transport, mixing and chaos in an unsteady vortical flow , 1990, Journal of Fluid Mechanics.

[3]  Carl-Heinz Krutzsch Über eine experimentell beobachtete Erscheinung an Wirbelringen bei ihrer translatorischen Bewegung in wirklichen Flüssigkeiten , 1939 .

[4]  T. Maxworthy The structure and stability of vortex rings , 1972, Journal of Fluid Mechanics.

[5]  P. Saffman The number of waves on unstable vortex rings , 1978, Journal of Fluid Mechanics.

[6]  Paolo Orlandi,et al.  A numerical study of three-dimensional vortex ring instabilities: viscous corrections and early nonlinear stage , 1994, Journal of Fluid Mechanics.

[7]  J. Marsden,et al.  Lagrangian analysis of fluid transport in empirical vortex ring flows , 2006 .

[8]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[9]  P. Dupont,et al.  Experimental characterization of the instability of the vortex rings. Part II: Non-linear phase , 2006 .

[10]  Morteza Gharib,et al.  On the decay of a turbulent vortex ring , 1994 .

[11]  T. Maxworthy,et al.  Turbulent vortex rings , 1974, Journal of Fluid Mechanics.

[12]  P. Saffman,et al.  The Velocity of Viscous Vortex Rings , 1970 .

[13]  J. Sullivan,et al.  On the stability of vortex rings , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Neil D. Sandham,et al.  Direct Numerical Simulation of Turbulent Flow over a Rectangular Trailing Edge , 2001 .

[15]  J. Arakeri,et al.  Translational velocity oscillations of piston generated vortex rings , 1994 .

[16]  H. Yamada,et al.  Experimental study of axial flow in a vortex ring , 2002 .

[17]  Michael Bergdorf,et al.  Direct numerical simulations of vortex rings at ReΓ = 7500 , 2007, Journal of Fluid Mechanics.

[18]  P. Dupont,et al.  Experimental characterization of the instability of the vortex ring. Part I: Linear phase , 2006 .

[19]  Sheila E. Widnall,et al.  The Structure and Dynamics of Vortex Filaments , 1975 .

[20]  Ari Glezer,et al.  An experimental study of a turbulent vortex ring , 1990, Journal of Fluid Mechanics.

[21]  T. Maxworthy,et al.  Some experimental studies of vortex rings , 1977, Journal of Fluid Mechanics.

[22]  J. Ferziger,et al.  Dynamical systems analysis of fluid transport in time-periodic vortex ring flows , 2006 .

[23]  John O. Dabiri,et al.  Fluid entrainment by isolated vortex rings , 2004, Journal of Fluid Mechanics.

[24]  S. Crow Stability theory for a pair of trailing vortices , 1970 .