A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method

This paper introduces a new algorithm to define a stable Lagrange multiplier space to impose stiff interface conditions within the context of the extended finite element method. In contrast to earlier approaches. we do not work with an interior penalty formulation as, e.g. for Nitsche techniques, but impose the constraints weakly in terms of Lagrange multipliers. Roughly speaking a stable and optimal discrete Lagrange multiplier space has to satisfy two criteria: a best approximation property and a uniform inf-sup condition. Owing to the fact that the interface does not match the edges of the mesh, the choice of a good discrete Lagrange Multiplier space is not trivial. Here we propose a new algorithm for the local construction of the Lagrange Multiplier space and show that a uniform inf-sup condition is satisfied. A counterexample is also presented, i.e. the inf-sup constant depends on the mesh-size and degenerates as it tends to zero. Numerical results in two-dimensional confirm the theoretical ones. Copyright

[1]  K. Bathe,et al.  Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .

[2]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[3]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[4]  Marc Alexander Schweitzer,et al.  Partition of Unity Method , 2003 .

[5]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[6]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[7]  Angelo Simone,et al.  Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .

[8]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[9]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[10]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[11]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[12]  Nicolas Moës,et al.  Imposing essential boundary conditions in the eXtended Finite Element Method , 2005 .

[13]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[14]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[15]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[16]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[17]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[18]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[19]  K. Bathe,et al.  The inf-sup test , 1993 .

[20]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[21]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[22]  Nicolas Moës,et al.  Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .

[23]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[24]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[26]  John E. Dolbow,et al.  Residual-free bubbles for embedded Dirichlet problems , 2008 .

[27]  Isaac Harari,et al.  A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .

[28]  Samuel Geniaut,et al.  An X‐FEM approach for large sliding contact along discontinuities , 2009 .

[29]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[30]  Stuttgart On a stochastic reaction-diffusion system modeling pattern formation , 2008 .

[31]  Tae-Yeon Kim,et al.  A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .

[32]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[33]  Samuel Geniaut,et al.  A stable 3D contact formulation for cracks using X-FEM , 2006 .

[34]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[35]  Samuel Geniaut,et al.  A stable 3D contact formulation using X-FEM , 2007 .