A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method
暂无分享,去创建一个
[1] K. Bathe,et al. Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .
[2] Ted Belytschko,et al. Arbitrary discontinuities in finite elements , 2001 .
[3] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[4] Marc Alexander Schweitzer,et al. Partition of Unity Method , 2003 .
[5] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[6] Ted Belytschko,et al. An extended finite element method for modeling crack growth with frictional contact , 2001 .
[7] Angelo Simone,et al. Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .
[8] I. Babuska,et al. The Partition of Unity Method , 1997 .
[9] P. Wriggers,et al. A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .
[10] T. Belytschko,et al. Extended finite element method for three-dimensional crack modelling , 2000 .
[11] Helio J. C. Barbosa,et al. The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .
[12] Nicolas Moës,et al. Imposing essential boundary conditions in the eXtended Finite Element Method , 2005 .
[13] Jaroslav Haslinger,et al. A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..
[14] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[15] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .
[16] John E. Dolbow,et al. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .
[17] T. Belytschko,et al. MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .
[18] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[19] K. Bathe,et al. The inf-sup test , 1993 .
[20] T. Belytschko,et al. Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .
[21] Jean-François Remacle,et al. A computational approach to handle complex microstructure geometries , 2003 .
[22] Nicolas Moës,et al. Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .
[23] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[24] T. Belytschko,et al. Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .
[26] John E. Dolbow,et al. Residual-free bubbles for embedded Dirichlet problems , 2008 .
[27] Isaac Harari,et al. A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .
[28] Samuel Geniaut,et al. An X‐FEM approach for large sliding contact along discontinuities , 2009 .
[29] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[30] Stuttgart On a stochastic reaction-diffusion system modeling pattern formation , 2008 .
[31] Tae-Yeon Kim,et al. A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .
[32] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[33] Samuel Geniaut,et al. A stable 3D contact formulation for cracks using X-FEM , 2006 .
[34] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[35] Samuel Geniaut,et al. A stable 3D contact formulation using X-FEM , 2007 .