AN “i” FOR AN i: SINGULAR TERMS, UNIQUENESS, AND REFERENCE

There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of −1 are indiscernible: anything true of one of them is true of the other. So how does the singular term ‘ i ’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and the philosophy of language, I suggest that i functions like a parameter in natural deduction systems. This may require some rethinking of the role of singular terms, at least in mathematical languages.

[1]  S. Shapiro Vagueness in Context , 2006 .

[2]  Roy Sorensen,et al.  Vagueness and Contradiction , 2001 .

[3]  Stewart Shapiro,et al.  Reviews-Philosophy of Mathematics: Structure and Ontology , 1998 .

[4]  Enrico Martino,et al.  Arbitrary Reference in Mathematical Reasoning , 2001 .

[5]  Willard Van Orman Quine,et al.  Philosophy of Logic. , 1988 .

[6]  Neil Tennant,et al.  A Defence of Arbitrary Objects , 1983 .

[7]  Stewart Shapiro,et al.  Identity, Indiscernibility, and ante rem Structuralism: The Tale of i and −i† , 2007 .

[8]  Willard Van Orman Quine,et al.  Methods of Logic , 1951 .

[9]  Karel Lambert Russell's Theory of Definite Descriptions* , 2010 .

[10]  Charles S. Chihara,et al.  Constructibility and mathematical existence , 1991 .

[11]  Robert Brandom XII—The Significance of Complex Numbers for Frege's Philosophy of Mathematics , 1996 .

[12]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[13]  Anne Bezuidenhout,et al.  Descriptions and Beyond , 2004 .

[14]  Fraser MacBride,et al.  What constitutes the numerical diversity of mathematical objects , 2006 .

[15]  Craige Roberts Uniqueness in Definite Noun Phrases , 2003 .

[16]  Ivar Bleiklie,et al.  From Governance to Identity , 2008 .

[17]  Geoffrey Hellman,et al.  Does Category Theory Provide a Framework for Mathematical Structuralism , 2003 .

[18]  S. Shapiro Philosophy of mathematics : structure and ontology , 1997 .

[19]  Gregor Murray,et al.  Structure and Identity , 1994 .

[20]  James Ladyman,et al.  Mathematical structuralism and the Identity of Indiscernibles , 2005 .

[21]  John P. Burgess,et al.  Book Review: Stewart Shapiro. Philosophy of Mathematics: Structure and Ontology , 1999, Notre Dame J. Formal Log..

[22]  I. Hacking The Identity of Indiscernibles , 1975 .

[23]  I. Heim E-Type pronouns and donkey anaphora , 1990 .

[24]  Gottlob Frege,et al.  Philosophical and mathematical correspondence , 1980 .

[25]  B. Russell MR. STRAWSON ON REFERRING , 1957 .

[26]  Steve Awodey An Answer to Hellman's Question: ‘Does Category Theory Provide a Framework for Mathematical Structuralism?’† , 2004 .

[27]  A. Ayer The Identity of Indiscernibles , 1954 .

[28]  Jeffrey Ketland,et al.  Structuralism and the identity of indiscernibles , 2006 .

[29]  Fraser MacBride,et al.  Identity and Modality , 2008 .

[30]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[31]  P. Strawson III.—ON REFERRING , 1950 .

[32]  Graham Priest Meinongianism and the Philosophy of Mathematics , 2003 .

[33]  B. Russell II.—On Denoting , 1905 .

[34]  P. T. Geach Russell's Theory of Descriptions , 1950 .

[35]  Richard Pettigrew,et al.  Platonism and Aristotelianism in Mathematics , 2007 .

[36]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[37]  J. Hintikka On denoting what? , 2005, Synthese.

[38]  Øystein Linnebo,et al.  Structuralism and the notion of dependence , 2007 .

[39]  Robert Kraut Indiscerniblity and ontology , 2004, Synthese.

[40]  Paul Benacerraf,et al.  Philosophy of mathematics: What numbers could not be , 1965 .

[41]  Kevin Scharp,et al.  Scorekeeping in a defective language game , 2005 .

[42]  Jukka Keränen,et al.  The Identity Problem for Realist Structuralism , 2001 .

[43]  Robert Stalnaker Context and content : essays on intentionality in speech and thought , 1999 .

[44]  Geoffrey Hellman,et al.  Three Varieties of Mathematical Structuralism , 2001 .

[45]  Paul D. Elbourne Situations and individuals , 2005 .

[46]  Kees van Deemter,et al.  Information sharing : reference and presupposition in language generation and interpretation , 2002 .

[47]  Hannes Leitgeb,et al.  Criteria of identity and structuralist ontology , 2007 .

[48]  Paul Dekker,et al.  Proceedings of the Fourteenth Amsterdam Colloquium , 2003 .

[49]  Hannes Leitgeb Struktur und Symbol , 2007 .

[50]  Ken Turner,et al.  The semantics/pragmatics interface from different points of view , 1999 .

[51]  Tim Button,et al.  Realistic structuralism’s identity crisis: A hybrid solution. , 2006 .

[52]  Peter Simons Frege’s Theory of Real Numbers , 1987 .

[53]  R. Smullyan First-Order Logic , 1968 .

[54]  Kit Fine,et al.  Reasoning with arbitrary objects , 1988 .

[55]  Stewart Shapiro,et al.  Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics , 2005 .

[56]  Graham Priest,et al.  Towards Non-Being , 2005 .