Ultrasound Vector Flow Imaging: II: Parallel Systems.

The paper gives a review of the current state-of-theart in ultrasound parallel acquisition systems for flow imaging using spherical and plane waves emissions. The imaging methods are explained along with the advantages of using these very fast and sensitive velocity estimators. These experimental systems are capable of acquiring thousands of images per second for fast moving flow as well as yielding estimates of low velocity flow. These emerging techniques allow vector flow systems to assess highly complex flow with transitory vortices and moving tissue, and they can also be used in functional ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed.

[1]  Lasse Lovstakken,et al.  Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. , 2014, Ultrasound in medicine & biology.

[2]  M. O'Donnell,et al.  Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  Piero Tortoli,et al.  Accurate blood peak velocity estimation using spectral models and vector doppler , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[4]  Charlie Demené,et al.  Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity , 2015, IEEE Transactions on Medical Imaging.

[5]  H. Torp Clutter rejection filters in color flow imaging: a theoretical approach , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Arash Kheradvar,et al.  Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. , 2013, European heart journal cardiovascular Imaging.

[7]  J A Jensen,et al.  In vivo comparison of three ultrasound vector velocity techniques to MR phase contrast angiography. , 2009, Ultrasonics.

[8]  Mickael Tanter,et al.  Ultrafast imaging in biomedical ultrasound , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[9]  ESPCI ParisTech,et al.  3 D ultrafast ultrasound imaging in vivo , 2014 .

[10]  J. Jensen,et al.  In vivo 3-D vector velocity estimation with continuous data , 2015, 2015 IEEE International Ultrasonics Symposium (IUS).

[11]  Kristoffer Lindskov Hansen,et al.  In vivo evaluation of synthetic aperture sequential beamforming. , 2012, Ultrasound in medicine & biology.

[12]  J. Jensen,et al.  Directional synthetic aperture flow imaging using a dual stage beamformer approach , 2011, 2011 IEEE International Ultrasonics Symposium.

[13]  Martin Christian Hemmsen,et al.  Implementation of real-time duplex synthetic aperture ultrasonography , 2015, 2015 IEEE International Ultrasonics Symposium (IUS).

[14]  J. Jensen,et al.  2-D tissue motion compensation of synthetic transmit aperture images , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[15]  J.A. Jensen,et al.  Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Stefan Bruckner,et al.  Live ultrasound-based particle visualization of blood flow in the heart , 2014, SCCG.

[17]  Fredrik Gran,et al.  Fast color flow mode imaging using plane wave excitation and temporal encoding , 2005, SPIE Medical Imaging.

[18]  Junying Chen,et al.  Medical Ultrasound Imaging: To GPU or Not to GPU? , 2011, IEEE Micro.

[19]  G.R. Lockwood,et al.  Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  R. Daigle,et al.  Estimation and display for Vector Doppler Imaging using planewave transmissions , 2011, 2011 IEEE International Ultrasonics Symposium.

[21]  Matthias Bo Stuart,et al.  3-D Vector Flow Estimation With Row–Column-Addressed Arrays , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[22]  Mickael Tanter,et al.  Ultrafast compound imaging for 2D displacement vector measurements: application to transient elastography and color flow mapping , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[23]  H. Torp,et al.  Clutter filters adapted to tissue motion in ultrasound color flow imaging , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  A. Dallai,et al.  ULA-OP: an advanced open platform for ultrasound research , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  J. Jensen,et al.  Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system , 2008, 2008 IEEE Ultrasonics Symposium.

[26]  M. Fink,et al.  Functional ultrasound imaging of the brain , 2011, Nature Methods.

[27]  S. K. Jespersen,et al.  Multi-Angle Compound Imaging , 1998, Ultrasonic imaging.

[28]  Olaf T. von Ramm,et al.  Live high-frame-rate echocardiography , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[29]  J. Jensen,et al.  In-vivo high dynamic range vector flow imaging , 2015, 2015 IEEE International Ultrasonics Symposium (IUS).

[30]  G. R. Lockwood,et al.  Design of sparse array imaging systems , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[31]  M. O'Donnell,et al.  Coded excitation system for improving the penetration of real-time phased-array imaging systems , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  K. Nagai,et al.  A New Synthetic-Aperture Focusing Method for Ultrasonic B-Scan Imaging by the Fourier Transform , 1985, IEEE Transactions on Sonics and Ultrasonics.

[33]  Kim L Gammelmark,et al.  In-vivo evaluation of convex array synthetic aperture imaging. , 2007, Ultrasound in medicine & biology.

[34]  M. O'Donnell,et al.  Synthetic aperture imaging for small scale systems , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  J. Jensen,et al.  High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  S. I. Nikolov,et al.  SARUS: A synthetic aperture real-time ultrasound system , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[37]  H. Torp,et al.  Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  Alfred C. H. Yu,et al.  Multi-channel pre-beamformed data acquisition system for research on advanced ultrasound imaging methods , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[39]  J. Arendt Jensen,et al.  A method for real-time three-dimensional vector velocity imaging , 2003 .

[40]  G. Kino,et al.  Real-Time Digital Image Reconstruction: A Description of Imaging Hardware and an Analysis of Quantization Errors , 1984, IEEE Transactions on Sonics and Ultrasonics.

[41]  M. O'Donnell,et al.  Subaperture processing for ultrasonic imaging , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  F. Gran,et al.  Multi-frequency encoding for fast color flow or quadroplex imaging , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[43]  Peter Grant,et al.  A Digital Synthetic Focus Acoustic Imaging System for NDE , 1978 .

[44]  G. S. Kino,et al.  Real Time Synthetic Aperture Imaging System , 1980 .

[45]  T. Misaridis,et al.  Use of modulated excitation signals in medical ultrasound. Part II: design and performance for medical imaging applications , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[46]  J. A. Jensen,et al.  Recursive ultrasound imaging , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[47]  Svetoslav Ivanov Nikolov,et al.  Synthetic aperture tissue and flow ultrasound imaging , 2002 .

[48]  Jørgen Arendt Jensen,et al.  Increasing the dynamic range of synthetic aperture vector flow imaging , 2014, Medical Imaging.

[49]  H. Ermert,et al.  Ultrasound synthetic aperture imaging: monostatic approach , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[50]  J.A. Jensen,et al.  Effects Influencing Focusing in Synthetic Aperture Vector Flow Imaging , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[51]  Y Takeuchi,et al.  An investigation of a spread energy method for medical ultrasound systems. Part one: theory and investigation. , 1979, Ultrasonics.

[52]  Piero Tortoli,et al.  Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[53]  M. Lewandowski,et al.  Optimization of real-time ultrasound PCIe data streaming and OpenCL processing for SAFT imaging , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[54]  K. Hansen,et al.  Accurate Angle Estimator for High-Frame-Rate 2-D Vector Flow Imaging , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[55]  S. Nikolov,et al.  Directional synthetic aperture flow imaging , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[56]  Jørgen Arendt Jensen,et al.  Estimation of Velocity Vectors in Synthetic Aperture Ultrasound Imaging , 2006, IEEE Transactions on Medical Imaging.

[57]  Maja Cikes,et al.  Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits. , 2014, JACC. Cardiovascular imaging.

[58]  R. Y. Chiao,et al.  Sparse array imaging with spatially-encoded transmits , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[59]  J.A. Jensen,et al.  Ultrasound research scanner for real-time synthetic aperture data acquisition , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[60]  Piero Tortoli,et al.  Multi-Transmit Beam Forming for Fast Cardiac Imaging—Experimental Validation and In Vivo Application , 2014, IEEE Transactions on Medical Imaging.

[61]  Marcin Lewandowski,et al.  A real-time streaming DAQ for Ultrasonix Research scanner , 2014, 2014 IEEE International Ultrasonics Symposium.

[62]  C.E. Burckhardt,et al.  An Experimental 2 MHz Synthetic Aperture Sonar System Intended for Medical Use , 1974, IEEE Transactions on Sonics and Ultrasonics.

[63]  Billy Y S Yiu,et al.  Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns. , 2014, Ultrasound in medicine & biology.

[64]  Fredrik Gran,et al.  Coded ultrasound for blood flow estimation using subband processing , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[65]  M. Fink,et al.  Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging , 2001 .

[66]  Herve Liebgott,et al.  2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[67]  J. Jensen,et al.  In-vivo synthetic aperture flow imaging in medical ultrasound , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[68]  Ingvild Kinn Ekroll,et al.  Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[69]  Jørgen A Jensen,et al.  Space-time encoding for high frame rate ultrasound imaging. , 2002, Ultrasonics.

[70]  Lasse Lovstakken,et al.  Eigen-based clutter filter design for ultrasound color flow imaging: a review , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[71]  Yangmo Yoo,et al.  Synthetic aperture imaging in breast ultrasound: a preliminary clinical study. , 2012, Academic radiology.

[72]  F. Gran,et al.  Spatial encoding using a code division technique for fast ultrasound imaging , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[73]  J. Jensen,et al.  Multielement synthetic transmit aperture imaging using temporal encoding , 2003, IEEE Transactions on Medical Imaging.

[74]  Kristoffer Lindskov Hansen,et al.  Clinical evaluation of synthetic aperture harmonic imaging for scanning focal malignant liver lesions. , 2015, Ultrasound in medicine & biology.

[75]  Jørgen Arendt Jensen,et al.  Synthetic aperture ultrasound imaging. , 2006, Ultrasonics.

[76]  J A Jensen,et al.  In-vivo Examples of Flow Patterns With The Fast Vector Velocity Ultrasound Method , 2009, Ultraschall in der Medizin.

[77]  J. Jensen Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach , 1996 .

[78]  Jørgen Arendt Jensen,et al.  Sequential beamforming for synthetic aperture imaging. , 2013, Ultrasonics.

[79]  M. Fink,et al.  Functional ultrasound imaging of the brain: theory and basic principles , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[80]  Fredrik Gran,et al.  Directional velocity estimation using a spatio-temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[81]  Hiroshi Kanai,et al.  Echo speckle imaging of blood particles with high-frame-rate echocardiography , 2014 .

[82]  O T von Ramm,et al.  Explososcan: A Parallel Processing Technique For High Speed Ultrasound Imaging With Linear Phased Arrays , 1985, Medical Imaging.

[83]  Damien Garcia,et al.  Ultrasound Vector Flow Imaging: I: Sequential Systems. , 2016, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[84]  J. Jensen,et al.  Velocity estimation using synthetic aperture imaging , 2001 .

[85]  Piero Tortoli,et al.  Real-time vector velocity assessment through multigate doppler and plane waves , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[86]  J Bercoff,et al.  Ultrafast compound doppler imaging: providing full blood flow characterization , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[87]  M. Fink,et al.  Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.