Initial Observations for Precipitation Cores With X-Band Dual Polarized Phased Array Weather Radar

The first X-band dual polarized phased array weather radar (DP-PAWR), which simultaneously transmits pulses of horizontal and vertical polarized radiation, was developed and installed at Saitama University, Japan, in December 2017. The DP-PAWR uses mechanical and electronic scanning at azimuth and elevation angles, respectively. It provides polarimetric precipitation measurements via 3-D volume scanning with an update rate between 10 and 60 s, for a range of up to 80 km. Here, we describe the initial DP-PAWR observation results. To evaluate the DP-PAWR observation accuracy, we compared the observational data with radar variables derived from Parsivel disdrometer data. In comparison with the disdrometer, the relative observation accuracy for the DP-PAWR radar reflectively factor had a standard deviation of 1.1 dB and mean value of 0.4 dB. We also conducted detailed observations of a developing thunderstorm using a specific differential phase (<inline-formula> <tex-math notation="LaTeX">$K_{\mathrm {dp}}$ </tex-math></inline-formula>) column, focusing on the <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm {dp}}$ </tex-math></inline-formula> core during the storm. The <inline-formula> <tex-math notation="LaTeX">$K_{\mathrm {dp}}$ </tex-math></inline-formula> core movements provided useful information about the convection flow during the storm.

[1]  R. Vogt,et al.  Agile-Beam Phased Array Radar for Weather Observations , 2007 .

[2]  M. Löffler-Mang,et al.  An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors , 2000 .

[3]  Guifu Zhang,et al.  Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment , 2002 .

[4]  Polarimetrically Tuned R(Z) Relations and Comparison of Radar Rainfall Methods , 1997 .

[5]  V. Chandrasekar,et al.  Rainfall Estimation Using Polarimetric Techniques at C-Band Frequencies , 1993 .

[6]  Yan Zhang,et al.  Cylindrical Polarimetric Phased Array Radar: Beamforming and Calibration for Weather Applications , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[7]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .

[8]  Koray Aydin,et al.  C-Band Dual-Polarization Radar Observables in Rain , 1992 .

[9]  Liping Liu,et al.  Advances in Chinese Dual-Polarization and Phased-Array Weather Radars: Observational Analysis of a Supercell in Southern China , 2018, Journal of Atmospheric and Oceanic Technology.

[10]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[11]  Travis M. Smith,et al.  Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar , 2008 .

[12]  V. Chandrasekar,et al.  Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part I: Theoretical and Empirical Basis , 2005 .

[13]  Hiroshi Kikuchi,et al.  Improving the Accuracy of Rain Rate Estimates Using X-Band Phased-Array Weather Radar Network , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Forrest J. Masters,et al.  Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VORTEX2 , 2013 .

[15]  Yan Zhang,et al.  The Atmospheric Imaging Radar: Simultaneous Volumetric Observations Using a Phased Array Weather Radar , 2013 .

[16]  S. Frasier,et al.  Evaluation of phased-array weather-radar polarimetry at X-band , 2018, 2018 IEEE Radar Conference (RadarConf18).

[17]  Guifu Zhang,et al.  A method for estimating rain rate and drop size distribution from polarimetric radar measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[18]  H. Bluestein,et al.  Mobile, Phased-Array, Doppler Radar Observations of Tornadoes at X Band , 2012 .

[19]  Alexander V. Ryzhkov,et al.  An Evaluation of Radar Rainfall Estimates from Specific Differential Phase , 2001 .

[20]  Jothiram Vivekanandan,et al.  Rigorous Approach to Polarimetric Radar Modeling of Hydrometeor Orientation Distributions , 1991 .

[21]  Hiroshi Kikuchi,et al.  Fast-Scanning Phased-Array Weather Radar With Angular Imaging Technique , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[22]  T. Ushio,et al.  High-Speed Volumetric Observation of a Wet Microburst Using X-Band Phased Array Weather Radar in Japan , 2016 .

[23]  Alexander V. Ryzhkov,et al.  THE JOINT POLARIZATION EXPERIMENT Polarimetric Rainfall Measurements and Hydrometeor Classification , 2005 .

[24]  V. N. Bringi,et al.  Orientation Angle Distributions of Drops after an 80-m Fall Using a 2D Video Disdrometer , 2008 .

[25]  D. Burgess,et al.  Comparison of Disdrometer and X-Band Mobile Radar Observations in Convective Precipitation , 2014 .

[26]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[27]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[28]  Guifu Zhang,et al.  Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme , 2010 .

[29]  K. Beard,et al.  A New Model for the Equilibrium Shape of Raindrops , 1987 .

[30]  Stephen J. Frasier,et al.  Weather Observation by an Electronically Scanned Dual-Polarization Phase-Tilt Radar , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[31]  H. Bluestein,et al.  Reexamining the Vertical Development of Tornadic Vortex Signatures in Supercells , 2013 .

[32]  Clemens Simmer,et al.  PARSIVEL Snow Observations: A Critical Assessment , 2010 .