VoxelAtlasGAN: 3D Left Ventricle Segmentation on Echocardiography with Atlas Guided Generation and Voxel-to-voxel Discrimination

3D left ventricle (LV) segmentation on echocardiography is very important for diagnosis and treatment of cardiac disease. It is not only because of that echocardiography is a real-time imaging technology and widespread in clinical application, but also because of that LV segmentation on 3D echocardiography can provide more full volume information of heart than LV segmentation on 2D echocardiography. However, 3D LV segmentation on echocardiography is still an open and challenging task owing to the lower contrast, higher noise and data dimensionality, limited annotation of 3D echocardiography. In this paper, we proposed a novel real-time framework, i.e., VoxelAtlasGAN, for 3D LV segmentation on 3D echocardiography. This framework has three contributions: (1) It is based on voxel-to-voxel conditional generative adversarial nets (cGAN). For the first time, cGAN is used for 3D LV segmentation on echocardiography. And cGAN advantageously fuses substantial 3D spatial context information from 3D echocardiography by self-learning structured loss; (2) For the first time, it embeds the atlas into an end-to-end optimization framework, which uses 3D LV atlas as a powerful prior knowledge to improve the inference speed, address the lower contrast and the limited annotation problems of 3D echocardiography; (3) It combines traditional discrimination loss and the new proposed consistent constraint, which further improves the generalization of the proposed framework. VoxelAtlasGAN was validated on 60 subjects on 3D echocardiography and it achieved satisfactory segmentation results and high inference speed. The mean surface distance is 1.85 mm, the mean hausdorff surface distance is 7.26 mm, mean dice is 0.953, the correlation of EF is 0.918, and the mean inference speed is 0.1 s. These results have demonstrated that our proposed method has great potential for clinical application.

[1]  Yang Wang,et al.  Prediction Based Collaborative Trackers (PCT): A Robust and Accurate Approach Toward 3D Medical Object Tracking , 2011, IEEE Transactions on Medical Imaging.

[2]  Denis Friboulet,et al.  Fast and fully automatic 3-d echocardiographic segmentation using B-spline explicit active surfaces: feasibility study and validation in a clinical setting. , 2013, Ultrasound in medicine & biology.

[3]  Henggui Zhang,et al.  A left ventricular segmentation method on 3D echocardiography using deep learning and snake , 2016, 2016 Computing in Cardiology Conference (CinC).

[4]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[5]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[6]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[7]  Henggui Zhang,et al.  Multi-Views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images , 2018, IEEE Transactions on Biomedical Engineering.

[8]  Otto Kamp,et al.  EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. , 2012, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[9]  J. Bosch,et al.  Automated border detection in three-dimensional echocardiography: principles and promises. , 2010, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[10]  Chen Wang,et al.  Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography , 2016, IEEE Transactions on Medical Imaging.

[11]  Konstantinos Kamnitsas,et al.  Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation , 2017, IEEE Transactions on Medical Imaging.

[12]  Örjan Smedby,et al.  Model-based left ventricle segmentation in 3D ultrasound using phase image , 2014, The MIDAS Journal.

[13]  Sébastien Ourselin,et al.  A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI , 2010, IEEE Transactions on Medical Imaging.

[14]  Nassir Navab,et al.  Left Ventricle Segmentation in Cardiac Ultrasound Using Hough-Forests With Implicit Shape and Appearance Priors , 2014, The MIDAS Journal.

[15]  Olivier Bernard,et al.  Cardiac Chamber Volumetric Assessment Using 3D Ultrasound - A Review. , 2016, Current pharmaceutical design.