Identifying Planetary Transit Candidates in TESS Full-frame Image Light Curves via Convolutional Neural Networks
暂无分享,去创建一个
Greg Olmschenk | Gioia Rau | Thomas Barclay | Richard K. Barry | Edward Wyrwas | Veselin Kostov | Ethan Kruse | Stela Ishitani Silva | Luca Cacciapuoti | Brian P. Powell | Jeremy D. Schnittman | T. Barclay | E. Kruse | R. Barry | V. Kostov | J. Schnittman | G. Olmschenk | G. Rau | B. Powell | E. Wyrwas | Stela Ishitani Silva | L. Cacciapuoti | Ethan Kruse
[1] Peter Tenenbaum,et al. The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.
[2] B. Scott Gaudi,et al. Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.
[3] K. von Braun,et al. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research , 2013, 1307.2944.
[4] Chelsea X. Huang,et al. Two Intermediate-mass Transiting Brown Dwarfs from the TESS Mission , 2020, The Astronomical Journal.
[5] Daniel Foreman-Mackey,et al. Detection of Hundreds of New Planet Candidates and Eclipsing Binaries in K2 Campaigns 0–8 , 2019, The Astrophysical Journal Supplement Series.
[6] Daniel Foreman-Mackey,et al. eleanor: An Open-source Tool for Extracting Light Curves from the TESS Full-frame Images , 2019, Publications of the Astronomical Society of the Pacific.
[7] Daniel Foreman-Mackey,et al. Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.
[8] Keivan G. Stassun,et al. The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.
[9] Fergal Mullally,et al. Discovery and Vetting of Exoplanets. I. Benchmarking K2 Vetting Tools , 2019, The Astronomical Journal.
[10] Elisa V. Quintana,et al. A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS) , 2018, The Astrophysical Journal Supplement Series.
[11] Ding-Xuan Zhou,et al. Universality of Deep Convolutional Neural Networks , 2018, Applied and Computational Harmonic Analysis.
[12] Jessie L. Dotson,et al. Lightkurve: Kepler and TESS time series analysis in Python , 2018 .
[13] G. Miller,et al. Cognitive science. , 1981, Science.
[14] K. Jarrod Millman,et al. Array programming with NumPy , 2020, Nat..
[15] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[16] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[17] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[18] Miguel de Val-Borro,et al. HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography , 2017, The Astronomical Journal.
[19] Adrian M. Price-Whelan,et al. Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.
[20] T. Guillot,et al. Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit , 2016, 1612.02776.
[21] P. Tenenbaum,et al. TESS Science Data Products Description Document: EXP-TESS-ARC-ICD-0014 Rev D , 2018 .
[22] Geoffrey E. Hinton,et al. Learning representations by back-propagating errors , 1986, Nature.
[23] David J Armstrong,et al. Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2 , 2016, 1611.01968.
[24] G. Kov'acs,et al. A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.
[25] E. Agol,et al. EVEREST: PIXEL LEVEL DECORRELATION OF K2 LIGHT CURVES , 2016, 1607.00524.