Input optics systems of the KAGRA detector during O3GK

KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25th to March 10th, 2020, and its first joint observation with the GEO 600 detector from April 7th – 21st, 2020 (O3GK). This study presents an overview of the input optics systems of the KAGRA detector, which consist of various optical systems, such as a laser source, its intensity and frequency stabilization systems, modulators, a Faraday isolator, mode-matching telescopes, and a high-power beam dump. These optics were successfully delivered to the KAGRA interferometer and operated stably during the observations. The laser frequency noise was observed to limit the detector sensitivity above a few kHz, whereas the laser intensity did not significantly limit the detector sensitivity.

C. Kim | Y. Kim | K. Kokeyama | H. Lee | M. Leonardi | E. Majorana | L. Naticchioni | J. Oh | R. Savage | E. Son | F. Travasso | L. Trozzo | D. Tuyenbayev | H. Lin | S. Bae | E. Capocasa | M. Chan | R. Flaminio | R. Goetz | M. Heintze | K. Izumi | G. Kang | J. Kim | W. Kim | R. Kumar | F. Lin | S. Morisaki | H. Ohta | J. Suresh | H. Vocca | L. Baiotti | I. Pinto | T. Narikawa | N. Uchikata | K. Arai | T. Tsutsui | T. Akutsu | A. Araya | M. Barton | A. Hagiwara | K. Hayama | E. Hirose | K. Ioka | M. Kamiizumi | Y. Kataoka | M. Marchiò | Y. Michimura | O. Miyakawa | A. Miyamoto | M. Nakano | M. Ohashi | N. Ohishi | K. Okutomi | K. Sakai | T. Sato | T. Sekiguchi | Y. Sekiguchi | T. Shimoda | A. Shoda | K. Somiya | H. Tagoshi | R. Takahashi | A. Takamori | S. Telada | T. Tomaru | K. Tsubono | T. Ushiba | T. Yokozawa | H. Yuzurihara | S. Zeidler | N. Aritomi | S. Takano | H. Takeda | R. Kozu | B. Ikenoue | Y. Obuchi | Ray-Kuang Lee | M. Fukunaga | K. Miyo | K. Inayoshi | J. Wang | H. Sotani | M. Putten | C. Kozakai | Y. Mori | Y. Chu | S. Kuroyanagi | E. Mart'in | H. Pang | Y. Himemoto | S. Araki | Y. Aso | Y. Bae | R. Bajpai | Z. Cao | H. Chu | S. Eguchi | Y. Enomoto | Y. Fujikawa | M. Fukushima | D. Gao | G. Ge | S. Ha | S. Haino | W.-B. Han | K. Hattori | H. Hayakawa | Y. Hiranuma | N. Hirata | Z. Hong | B. Hsieh | G-Z. Huang | H. Huang | Y. Huang | Y. Huang | D. Hui | S. Ide | S. Imam | C. Jeon | H.-B. Jin | P. Jung | K. Jung | K. Kaihotsu | T. Kajita | M. Kakizaki | N. Kawai | T. Kawasaki | N. Kimura | N. Kita | H. Kitazawa | Y. Kojima | K. Komori | A. Kong | K. Kotake | J. Kume | C. Kuo | H. Kuo | Y. Kuromiya | K. Kusayanagi | K. Kwak | C.Y. Lin | F. Lin | L. Luo | N. Mio | Y. Miyazaki | S. Miyoki | Y. Moriwaki | K. Nagano | S. Nagano | H. Nakano | R. Nakashima | Y. Nakayama | R. Negishi | L. Quynh | W. Ni | S. Nozaki | W. Ogaki | K. Oh | M. Ohkawa | Y. Okutani | K. Oohara | C. Ooi | S. Oshino | S. Otabe | K. Pan | A. Parisi | F. Arellano | N. Sago | S. Saito | Y. Sakai | Y. Sakuno | T. Sawada | S. Shibagaki | R. Shimizu | K. Shimode | H. Shinkai | T. Shishido | R. Sugimoto | M. Takeda | S. Tanioka | D. Tanner | Y. Tomigami | T. Tsang | J. Tsao | S. Tsuchida | T. Tsuzuki | A. Ueda | T. Uehara | G. Ueshima | F. Uraguchi | T. Washimi | C. Wu | S. Wu | W-R. Xu | K. Yamashita | R. Yamazaki | K. Yokogawa | J. Yokoyama | T. Yoshioka | M. Zhan | K. L. Li | K. Cannon | M. Ando | Y. Inoue | T. Furuhata | S. Kanbara | H. W. Lee | L. Lin | H. Takahashi | Y. Zhao | K. Nakamura | Y. Saito | Y. Arai | Y. Fujii | N. Kanda | P. Huang | G. Liu | S. Oh | Y. Chen | K. Hasegawa | Y. Itoh | K. Kawaguchi | J. Kim | A. Nishizawa | L. Shao | T. Suzuki | T. Tanaka | T. Tomura | T. Uchiyama | K. Ueno | H. Wu | T. Yamada | Zhaxisang Zhu | K. Ito | K. Tanaka | S. Sato | J. Liu | K. Yamamoto | K. Yano | K. Chen | H. Asada | C. Chen | C. Chiang | H. Lin | J. Park | H. Tanaka | T. Yamamoto | Y. Yang | H. Zhang | C. Muller | T. Tanaka | G. Huang | S. Oh | L. Lin | K. Chen | S. -. Oh

[1]  C. Kim,et al.  Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK) , 2022, Progress of Theoretical and Experimental Physics.

[2]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[3]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[4]  S. Oh,et al.  An arm length stabilization system for KAGRA and future gravitational-wave detectors , 2019, Classical and Quantum Gravity.

[5]  E. Hirose,et al.  Influence of nonuniformity in sapphire substrates for a gravitational wave telescope , 2019, Physical Review D.

[6]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[7]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[8]  K. Komori,et al.  Polarization test of gravitational waves from compact binary coalescences , 2018, Physical Review D.

[9]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[10]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[11]  T.Narita,et al.  Construction of KAGRA: an Underground Gravitational Wave Observatory , 2017, 1712.00148.

[12]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[13]  Jameson Graef Rollins,et al.  Distributed state machine supervision for long-baseline gravitational-wave detectors. , 2016, The Review of scientific instruments.

[14]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[15]  Guido Mueller,et al.  The advanced LIGO input optics. , 2016, The Review of scientific instruments.

[16]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[17]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[18]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[19]  J. K. Blackburn,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[20]  Linqing Wen,et al.  Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors , 2010, 1003.2504.

[21]  Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal , 2007 .

[22]  Masaki Ando,et al.  Vacuum-compatible vibration isolation stack for an interferometric gravitational wave detector TAMA300 , 2002 .

[23]  G. Mueller,et al.  Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers , 2002 .

[24]  Ryutaro Takahashi,et al.  Improvement of the vibration isolation system for TAMA300 , 2002 .

[25]  David H. Reitze,et al.  Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators , 2000 .

[26]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[27]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .