M82-F: a doomed super star cluster?

We present high dispersion echelle spectroscopy of the very luminous, young super star cluster (SSC) ‘F’ in M82, obtained with the 4.2-m William Herschel Telescope (WHT), for the purpose of deriving its dynamical mass and assessing whether it will survive to become an old globular cluster. In addition to the stellar lines, the spectrum contains complex Na I absorption and broad emission lines from the ionized gas. We measure a stellar velocity dispersion of 13.4±0.7 kms −1 , a projected half-light radius of 2.8 ± 0.3 pc from archival HST/WFPC2 images, and derive a dynamical mass of 1.2±0.1×10 6 M⊙, demonstrating that M82-F is a very massive, compact cluster. We determine that the current luminosity-to-mass ratio (LV /M)⊙ for M82-F is 45 ± 13. Comparison with spectral synthesis models shows that (LV /M)⊙ is a factor of � 5 higher than that predicted for a standard Kroupa (2001) initial mass function (IMF) at the well-determined age for M82-F of 60 ± 20 Myr. This high value of (LV /M)⊙ indicates a deficit of low mass stars in M82-F; the current mass function (MF) evidently is ‘top-heavy’. We find that a lower mass cutoff of 2–3M⊙ is required to match the observations for a MF with a slope � = 2.3. Since the cluster apparently lacks longlived low mass stars, it will not become an old globular cluster, but probably will dissolve at an age of 62 Gyr. We also derive up-dated luminosity-to-mass ratios for the younger SSCs NGC 1569A and NGC 1705-1. For the first object, the observations are consistent with a slightly steeper MF (� = 2.5) whereas for NGC 1705-1, the observed ratio requires the MF to be truncated near 2 M⊙ for a slope of � = 2.3. We discuss the implications of our findings in the context of large scale IMF variations; with the present data the top-heavy MF could reflect a local mass segregation effect during the birth of the cluster. M82-F likely formed in a dense molecular cloud; however, its high radial velocity with respect to the centre of M82 (� 175 km s −1 ) suggests it is on an eccentric orbit and now far from its birthplace, so the environment of its formation is unknown.

[1]  Daniel Devost,et al.  The Ionized Gas in the Aftermath of a Starburst: The Case of NGC 1569 , 1997 .

[2]  M. Joy,et al.  A near-infrared spectroscopic study of the starburst core of M82 , 1990 .

[3]  D. F. Gray,et al.  Rotation and macroturbulence in bright giants , 1986 .

[4]  William E. Harris,et al.  GLOBULAR CLUSTER SYSTEMS IN GALAXIES BEYOND THE LOCAL GROUP , 1991 .

[5]  J. Lacy,et al.  Structure and kinematics within the Starburst nucleus of M82: Searching for a bar , 1995 .

[6]  Ortwin Gerhard,et al.  The Galactic Center He I Stars: Remains of a Dissolved Young Cluster? , 2000 .

[7]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[8]  K. Lo,et al.  Locations of Starbursts in M82 , 1995 .

[9]  R. Chevalier,et al.  Supernova Remnants in the Fossil Starburst in M82 , 1999, astro-ph/9910064.

[10]  L. Ho,et al.  Dynamical Evidence for a Massive, Young Globular Cluster in NGC 1569 , 1996, astro-ph/9605189.

[11]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[12]  D. Hunter,et al.  The Star Clusters in the Irregular Galaxy NGC 4449 , 2000, astro-ph/0010515.

[13]  S. Shapiro,et al.  Globular Cluster Evolution in the Galaxy: A Global View , 1987 .

[14]  Y. Sofue,et al.  Peculiar rotations of molecular gas in M82 : Keplerian disk and slowly rotating halo , 1992 .

[15]  Garth D. Illingworth,et al.  The Hubble Space Telescope Extragalactic Distance Scale Key Project. 1: The discovery of Cepheids and a new distance to M81 , 1994 .

[16]  S. Faber,et al.  Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. I. Calibration of Cluster Samples , 1994, astro-ph/9411046.

[17]  The Intrinsic Properties of the Stellar Clusters in the M82 Starburst Complex: Propagating Star Formation? , 1997 .

[18]  Simon F. Portegies Zwart,et al.  The Evolution of Globular Clusters in the Galaxy , 1999, astro-ph/9903366.

[19]  Martin D. Weinberg,et al.  Evolution of globular clusters in the Galaxy , 1990 .

[20]  Synthetic Spectra of H Balmer and He I Absorption Lines. II. Evolutionary Synthesis Models for Starburst and Poststarburst Galaxies , 1999, astro-ph/9907116.

[21]  Linda J. Smith,et al.  Stellar populations and ages of M82 super star clusters , 1998, astro-ph/9812174.

[22]  Mark Clampin,et al.  The Low End of the Initial Mass Function in Young Large Magellanic Cloud Clusters. I. The Case of R136 , 2000 .

[23]  R. O’Connell,et al.  The central regions of M82. , 1978 .

[24]  César Esteban,et al.  Revista Mexicana de Astronomía y Astrofísica , 2002 .

[25]  W. Colley,et al.  Hubble Space Telescope Imaging of Super Star Clusters in M82 , 1995 .

[26]  Destruction of the Galactic Globular Cluster System , 1996, astro-ph/9603042.

[27]  D. Strickland,et al.  Starburst-driven galactic winds — I. Energetics and intrinsic X-ray emission , 2000, astro-ph/0001395.

[28]  D. A. Hunter,et al.  A library of stellar spectra. , 1984 .

[29]  D. Hunter,et al.  Hubble Space Telescope imaging of super-star clusters in NGC 1569 and NGC 1705 , 1994 .

[30]  G. Rieke,et al.  M82: The saga continues , 1993 .

[31]  G. Rieke,et al.  Starburst Modeling of M82: Test Case for a Biased Initial Mass Function , 1993 .

[32]  B. Elmegreen,et al.  A Universal Formation Mechanism for Open and Globular Clusters in Turbulent Gas , 1997 .

[33]  W. Mathews,et al.  Stellar evolution in the starburst galaxy M82 : evidence for a top-heavy initial mass function , 1993 .

[34]  S. M. Fall,et al.  The Mass Function of Young Star Clusters in the “Antennae” Galaxies , 1999, The Astrophysical journal.

[35]  N. Vogt,et al.  The Nature of Compact Galaxies in the Hubble Deep Field. I. Global Properties , 1997 .

[36]  J. Scalo The stellar initial mass function , 1986 .

[37]  UK.,et al.  Keck Spectroscopy of Candidate Proto-Globular Clusters in NGC 1275 , 1998, astro-ph/9805086.

[38]  S. M. Fall,et al.  The Luminosity Function of Young Star Clusters in “the Antennae” Galaxies (NGC 4038/4039) , 1999, astro-ph/9907430.

[39]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[40]  Detection of the red giant branch stars in m82 using the hubble space telescope , 1999, astro-ph/9906484.

[41]  The Fossil Starburst in M82 , 2000, astro-ph/0010046.

[42]  Andreas Quirrenbach,et al.  Stellar Content of the Galactic Starburst Template NGC 3603 from Adaptive Optics Observations , 1998 .

[43]  C. Leitherer,et al.  Are the Super-Star Clusters of NGC 1569 in a Poststarburst Phase? , 1997 .

[44]  Tod R. Lauer,et al.  Core expansion in young star clusters in the Large Magellanic Cloud , 1989 .

[45]  R. Schiavon,et al.  Near-infrared Spectral Features in Single-aged Stellar Populations , 1999, astro-ph/9910274.

[46]  C. Leitherer,et al.  Hubble Space Telescope discovery of candidate young globular clusters in the merger remnant NGC 7252 , 1993 .

[47]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[48]  A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics , 1998 .

[49]  G. R. Meurer,et al.  Starbursts and Star Clusters in the Ultraviolet , 1995 .

[50]  C. Leitherer,et al.  The Structure of the Super-Star Clusters in NGC 1569 from Hubble Space Telescope WFPC2 Images , 1997 .

[51]  S. M. Fall,et al.  The Structure of Young Star Clusters in the Large Magellanic Cloud , 1987 .

[52]  E. Skillman,et al.  Elemental Abundance Variations and Chemical Enrichment from Massive Stars in Starbursts. II. NGC 1569 , 1996, astro-ph/9706235.

[53]  C. Leitherer,et al.  Kinematics of the Interstellar Medium in NGC 1705: Implications for Distant Star-Forming Galaxies , 1997 .

[54]  C. Telesco Enhanced star formation and infrared emission in the centers of galaxies. , 1988 .

[55]  S. M. Fall,et al.  The stellar content of rich young clusters in the Large Magellanic Cloud , 1989 .

[56]  Stefano Casertano,et al.  THE PHOTOMETRIC PERFORMANCE AND CALIBRATION OF WFPC2 , 1995 .

[57]  L. Ho,et al.  High-Dispersion Spectroscopy of a Luminous, Young Star Cluster in NGC 1705: Further Evidence for Present-Day Formation of Globular Clusters , 1996, astro-ph/9606031.

[58]  D. Hunter,et al.  The Star Clusters in the Starburst Irregular Galaxy NGC 1569 , 2000, astro-ph/0009280.

[59]  Rodger I. Thompson,et al.  The nature of the nuclear sources in M82 and NGC 253 , 1980 .

[60]  A. Sternberg The Initial Mass Functions in the Super-Star Clusters NGC 1569A and NGC 1705-1 , 1998, astro-ph/9805240.

[61]  S. N. Raines,et al.  High Spatial Resolution Fabry-Perot Imaging of M82: Near-Infrared Recombination Line Observations , 1995 .

[62]  Millimeter Recombination Line Emission in the Starburst Galaxy M82 , 1996 .

[63]  C. Leitherer,et al.  Synthetic Spectra of H Balmer and He I Absorption Lines. I. Stellar Library , 1999, astro-ph/9907115.

[64]  M. Mateo,et al.  Mass Segregation in Young Large Magellanic Cloud Clusters. I. NGC 2157 , 1998 .

[65]  Philip Massey,et al.  Star Formation in R136: A Cluster of O3 Stars Revealed by Hubble Space Telescope Spectroscopy , 1998 .

[66]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[67]  M. Morris,et al.  Evaporation of Compact Young Clusters near the Galactic Center , 1999, astro-ph/9905325.

[68]  Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999, astro-ph/9906299.

[69]  Simon P Goodwin The initial conditions of young globular clusters in the Large Magellanic Cloud , 1997 .

[70]  T. Sakurai,et al.  Radio interferometer observations of solar wind turbulence from the orbit of Helios to the solar corona , 1995 .

[71]  J. Patterson,et al.  Superhumps in cataclysmic binaries. II: PG 0917+342 , 1993 .

[72]  P. Ho,et al.  H I streamers around M82 - Tidally disrupted outer gas disk , 1993 .