Type Theories, Normal Forms and D_\infty-Lambda-Models

Abstract A (non-standard) inverse-limit λ-model D ∞ ∗ is constructed which has a non Hilbert-Post complete theory. Moreover, in D ∞ ∗ , a simple semantic characterization of normalizable terms is given. These results are proved using the properties of a generalized type assignment system which yields a filter model (Barendregt, Coppo, and Dezani-Ciancaglini, 1983 , J. Symbolic. Logic, 48, 931–940; Coppo, Dezani-Ciancaglini, Honsell, and Longo, 1983 , pp. 241–262, “Logic Colloquium '82,” North-Holland, Amsterdam), isomorphic to D ∞ ∗ . The type assignment system is also proved complete with respect to an interpretation of types (in the term model of β-equality) based only on normalization properties. As an application a class of maximal monoids of normalizable terms is characterized.

[1]  M. Hyland A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus , 1976 .

[2]  Christopher P. Wadsworth,et al.  The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..

[3]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[4]  Mariangiola Dezani-Ciancaglini,et al.  Applicative Information Systems , 1983, CAAP.

[5]  Mariangiola Dezani-Ciancaglini,et al.  A new type assignment for λ-terms , 1978, Arch. Math. Log..

[6]  M.Dezani Mdezani,et al.  Maximal Monoids of Normal Forms , 1982 .

[7]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[8]  M.Dezani Mdezani,et al.  Applicative Information Systems , 1983 .

[9]  G. Longo,et al.  Lambda-Calculus Models and Extensionality , 1980, Math. Log. Q..

[10]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[11]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[12]  Mariangiola Dezani-Ciancaglini,et al.  Functional Characters of Solvable Terms , 1981, Math. Log. Q..

[13]  M. Dezani-Ciancaglini,et al.  Extended Type Structures and Filter Lambda Models , 1984 .

[14]  J. Roger Hindley,et al.  The Completeness Theorem for Typing lambda-Terms , 1983, Theor. Comput. Sci..

[15]  M. Coppo,et al.  Functional Characterization of Some Semantic Equalities inside Lambda-Calculus , 1979, ICALP.

[16]  Mariangiola Dezani-Ciancaglini,et al.  F-Semantics for Intersection Type Discipline , 1984, Semantics of Data Types.

[17]  Albert R. Meyer,et al.  What is a Model of the Lambda Calculus? , 1982, Inf. Control..

[18]  J. Roger Hindley,et al.  The simple semantics for Coppe-Dezani-Sallé types , 1982, Symposium on Programming.

[19]  James H. Morris,et al.  Lambda-calculus models of programming languages. , 1969 .

[20]  Mariangiola Dezani-Ciancaglini,et al.  Lambda-terms as total or partial functions on normal forms , 1975, Lambda-Calculus and Computer Science Theory.

[21]  Henk Barendregt,et al.  Comparing some classes of lambda calculus models , 1980 .

[22]  Martin Hyland A survey of some useful partial order relations on terms of the lambda calculus , 1975, Lambda-Calculus and Computer Science Theory.

[23]  P. Sallé Une extension de la theorie des types en λ-calcul , 1978 .