Multiple kink solutions for M-component Burgers equations in (1+1)-dimensions and (2+1)-dimensions

Abstract M-component Burgers equations in (1+1)-dimensions and (2+1)-dimensions are examined for complete integrability. The Cole–Hopf transformation method and the simplified form of Hereman’s method are used to achieve this goal. Multiple kink solutions and multiple singular kink solutions are formally derived for each vector equation.

[1]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation , 2008, Appl. Math. Comput..

[2]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[3]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation , 2008, Appl. Math. Comput..

[4]  Jarmo Hietarinta,et al.  A Search for Bilinear Equations Passing Hirota''s Three-Soliton Condition , 1987 .

[5]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[6]  A. Wazwaz The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation , 2008, Appl. Math. Comput..

[7]  Mikhail V. Foursov,et al.  On integrable coupled Burgers-type equations , 2000 .

[8]  Abdul-Majid Wazwaz,et al.  The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves , 2008, Appl. Math. Comput..

[9]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method , 2007, Appl. Math. Comput..

[10]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Boussinesq equation , 2007, Appl. Math. Comput..

[11]  Abdul-Majid Wazwaz,et al.  New solitons and kink solutions for the Gardner equation , 2007 .

[12]  Mikhail V. Foursov,et al.  Classification of certain integrable coupled potential KdV and modified KdV-type equations , 2000 .

[13]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers equation and the coupled Burgers equations , 2007, Appl. Math. Comput..

[14]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .