A Matrix-free Two-grid Preconditioner for Solving Boundary Integral Equations in Electromagnetism

In this paper, we describe a matrix-free iterative algorithm based on the GMRES method for solving electromagnetic scattering problems expressed in an integral formulation. Integral methods are an interesting alternative to differential equation solvers for this problem class since they do not require absorbing boundary conditions and they mesh only the surface of the radiating object giving rise to dense and smaller linear systems of equations. However, in realistic applications the discretized systems can be very large and for some integral formulations, like the popular Electric Field Integral Equation, they become ill-conditioned when the frequency increases. This means that iterative Krylov solvers have to be combined with fast methods for the matrix-vector products and robust preconditioning to be affordable in terms of CPU time. In this work we describe a matrix-free two-grid preconditioner for the GMRES solver combined with the Fast Multipole Method. The preconditioner is an algebraic two-grid cycle built on top of a sparse approximate inverse that is used as smoother, while the grid transfer operators are defined using spectral information of the preconditioned matrix. Experiments on a set of linear systems arising from real radar cross section calculation in industry illustrate the potential of the proposed approach for solving large-scale problems in electromagnetism.

[1]  Ke Chen An Analysis of Sparse Approximate Inverse Preconditioners for Boundary Integral Equations , 2001, SIAM J. Matrix Anal. Appl..

[2]  S. A. Kharchenko,et al.  Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..

[3]  Bruno Carpentieri,et al.  Combining Fast Multipole Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism Calculations , 2005, SIAM J. Sci. Comput..

[4]  Ray S. Tuminaro A Highly Parallel Multigrid-Like Method for the Solution of the Euler Equations , 1992, SIAM J. Sci. Comput..

[5]  William Gropp,et al.  A Parallel Version of the Fast Multipole Method-Invited Talk , 1987, PPSC.

[6]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[7]  Bruno Carpentieri,et al.  Additive and Multiplicative Two-Level Spectral Preconditioning for General Linear Systems , 2007, SIAM J. Sci. Comput..

[8]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[9]  C. Le Calvez,et al.  Implicitly restarted and deflated GMRES , 1999, Numerical Algorithms.

[10]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[11]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[12]  Eric F Darve The Fast Multipole Method , 2000 .

[13]  Stephen A. Vavasis,et al.  Preconditioning for Boundary Integral Equations , 1992, SIAM J. Matrix Anal. Appl..

[14]  Weng Cho Chew,et al.  A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres , 1993 .

[15]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[16]  Caicheng Lu,et al.  Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems , 2003 .

[17]  Jussi Rahola,et al.  Experiments On Iterative Methods And The Fast Multipole Method In Electromagnetic Scattering Calcula , 1998 .

[18]  YereminA. Yu.,et al.  Factorized sparse approximate inverse preconditionings I , 1993 .

[19]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[20]  N. Gould,et al.  Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques , 1998, SIAM J. Sci. Comput..

[21]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[22]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[23]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[24]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[25]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[26]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[27]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[28]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[29]  Stéphane Lanteri,et al.  Multiplicative and additive parallel multigrid algorithms for the acceleration of compressible flow computations on unstructured meshes , 2001 .

[30]  F.X. Canning The impedance matrix localization (IML) method for moment-method calculations , 1990, IEEE Antennas and Propagation Magazine.

[31]  Guillaume Alléon,et al.  Massively Parallel Processing Boosts the Solution of Industrial Electromagnetic Problems: High Performance Out-of-Core Solution of Complex Dense Systems , 1997, PPSC.

[32]  Ronald B. Morgan,et al.  GMRES with Deflated Restarting , 2002, SIAM J. Sci. Comput..

[33]  Guillaume Alléon,et al.  Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics , 1997, Numerical Algorithms.

[34]  Bruno Carpentieri,et al.  A Class of Spectral Two-Level Preconditioners , 2003, SIAM J. Sci. Comput..

[35]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[36]  Weng Cho Chew,et al.  On the spectrum of the electric field integral equation and the convergence of the moment method , 2001 .

[37]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[38]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[39]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[40]  Guillaume Sylvand La méthode multipôle rapide en électromagnétisme. Performances, parallélisation, applications , 2002 .

[41]  John L. Volakis,et al.  Incomplete LU preconditioner for FMM implementation , 2000 .

[42]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[43]  Jun Zhang,et al.  Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid Integral equations in electromagnetics , 2004 .

[44]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .