Order and Metric Compatible Symbolic Sequence Processing

A traditional random variable X is a function that maps from a stochastic process to the “real line” (R, ≤, d, +, ⋅) , where R is the set of real numbers, ≤ is the standard linear order relation on R , d(x, y) ≜ |x − y| is the usual metric on R , and (R, +, ⋅) is the standard field on R . 📃 Greenhoe (2015b) has demonstrated that this definition of random variable is often a poor choice for computing statistics when the stochastic process that X maps from has structure that is dissimilar to that of the real line. 📃 Greenhoe (2015b) has further proposed an alternative statistical system, that rather than mapping a stochastic process to the real line, instead maps to a weighted graph that has order and metric geometry structures similar to that of the underlying stochastic process. In particular, ideally the structure X maps from and the structure X maps to are, with respect to each other, both isomorphic and isometric. Mapping to a weighted graph is useful for analysis of a single random variable—for example the expectation EX of X can be defined simply as the center of its weighted graph. However, the mapping has limitationswith regards to a sequence of randomvariables in performing sequence analysis (using for exampleFourier analysis orwavelet analysis), in performing sequenceprocessing (using for example FIR filtering or IIR filtering ), in making diagnostic measurements (using a post-transformmetric space), or in making “optimal” decisions (based on “distance” measurements in a metric space or more generally a distance space). Rather thanmapping to aweighted graph, this paper proposes insteadmapping to an ordereddistance linear space Y ≜ (R, ≤, d, +, ⋅, R, ∔, ⨰) , where (R,∔, ⨰) is a field, + is the vector addition operator on Rn ×Rn , and ⋅ is the scalar-vector multiplication operator on R×Rn . The linear space component of Y provides a much more convenient (as compared to the weighted graph) framework for sequence analysis and processing. The ordered set and distance space components of Y allow one to preserve the order structure and distance geometry inherent in the underlying stochastic process, which in turn likely provides a less distorted (as compared to the real line) framework for analysis, diagnostics, and optimal decision making. 2010 Mathematics Subject Classification: 60B99,60G05 (primary); 60E15,60G20,62F03,62P10,92D20 (secondary) Universal Decimal Classification (UDC): 519.2+519.6+601

[1]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[2]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[3]  A. Fraenkel Untersuchungen über die Grundlagen der Mengenlehre , 1925 .

[4]  Mihály Bessenyei,et al.  A contraction principle in semimetric spaces , 2014, 1401.1709.

[5]  R. Voss,et al.  Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. , 1992, Physical review letters.

[6]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[7]  A. Fraenkel,et al.  Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .

[8]  Gregory K. Miller Probability: Modeling and Applications to Random Processes , 2006 .

[9]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[10]  Roberto Garello,et al.  The Minimum Entropy Mapping Spectrum of a DNA Sequence , 2010, IEEE Transactions on Information Theory.

[11]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[12]  Daniel J. Greenhoe Properties of distance spaces with power triangle inequalities , 2016, PeerJ Prepr..

[13]  D. Rajan Probability, Random Variables, and Stochastic Processes , 2017 .

[14]  J. Giles Introduction to the Analysis of Metric Spaces , 1987 .

[15]  Daniel J. Greenhoe Order and metric geometry compatible stochastic processing , 2015, PeerJ Prepr..

[16]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[17]  R. Dedekind,et al.  Ueber die von drei Moduln erzeugte Dualgruppe , 1900 .

[18]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[19]  E. Pap Null-Additive Set Functions , 1995 .

[20]  W. A. Kirk,et al.  An Introduction to Metric Spaces and Fixed Point Theory , 2001 .

[21]  M. Fréchet Les espaces abstraits et leur théorie considérée comme : introduction a l'analyse générale , 1929 .

[22]  C. Kubrusly Elements of Operator Theory , 2001 .

[23]  Leonard M. Blumenthal,et al.  Distance Geometries, a Study of the Development of Abstract Metrices , 1938 .

[24]  Fred Galvin,et al.  Completeness in semimetric spaces , 1984 .

[25]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[26]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .

[27]  Kazimierz Kuratowski,et al.  Introduction to Set Theory and Topology , 1964 .

[28]  Umberto Bottazzini,et al.  The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .

[29]  G. Birkhoff,et al.  On the combination of subalgebras , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Wallace Alvin Wilson,et al.  On Semi-Metric Spaces , 1931 .

[31]  T. Neumann Advanced Combinatorics The Art Of Finite And Infinite Expansions , 2016 .

[32]  Alejandro Domínguez A history of the convolution operation. , 2015, IEEE pulse.

[33]  Elena Deza,et al.  Dictionary of distances , 2006 .

[34]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[35]  J. Klauder A Modern Approach to Functional Integration , 2010 .

[36]  Carl Faith,et al.  Introduction to ring theory: Schur’s Lemma and semisimple rings, prime and primitive rings, Noetherian and Artinian modules, nil, prime and Jacobson radicals , 2004 .

[37]  Oystein Ore,et al.  On the Foundation of Abstract Algebra. II , 1935 .

[38]  K. Menger Untersuchungen über allgemeine Metrik , 1928 .

[39]  Fumitomo Maeda,et al.  Theory of symmetric lattices , 1970 .

[40]  Ladislav Beran,et al.  Orthomodular Lattices: Algebraic Approach , 1985 .

[41]  C. Isham,et al.  Modern Differential Geometry For Physicists , 1989 .

[42]  Patrick Suppes,et al.  Axiomatic set theory , 1969 .

[43]  Reena Singh,et al.  Comparison of Daubechies, Coiflet, and Symlet for edge detection , 1997, Defense, Security, and Sensing.

[44]  I. Molchanov Theory of Random Sets , 2005 .

[45]  安達 謙三 Principles of real and complex analysis , 2006 .

[46]  C. Kuratowski Sur la notion de l'ordre dans la Théorie des Ensembles , 1921 .

[47]  Anthony N. Michel,et al.  Applied Algebra and Functional Analysis , 2011 .