Geopolymerisation: A review and prospects for the minerals industry

Abstract Inorganic polymers, more commonly referred to as “geopolymers”, are alumino-silicate materials which exhibit excellent physical and chemical properties and a diverse range of potential applications, including precast structures and non-structural elements, concrete pavements and products, containment and immobilisation of toxic, hazardous and radioactive wastes, advanced structural tooling and refractory ceramics, and fire resistant composites used in buildings, aeroplanes, shipbuilding, racing cars, and the nuclear power industry. The current paper presents a brief history and a review of geopolymer technology, summarises and critically analyses the most important research findings over the last 25 years, attempts to elucidate chemistry and reaction mechanisms for the most important categories of materials involved, identifies the gaps in the existing body of knowledge and underlines the reasons why this promising technology after all these years of research has not become widely accepted by the industry. Finally the paper proposes further research and development topics and suggests steps forward to improve the potential of geopolymerisation, focusing on the utilisation of mining and metallurgical wastes and by-products, the synthesis of geopolymers with advanced properties and the stabilisation of hazardous wastes. It is strongly believed that geopolymerisation, when established as a viable technology and recognised by the industry, will contribute to the sustainable development of the minerals sector.

[1]  J. Deventer,et al.  The effects of inorganic salt contamination on the strength and durability of geopolymers , 2002 .

[2]  K. Sagoe-Crentsil,et al.  Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems , 2007 .

[3]  Á. Palomo,et al.  Characterisation of fly ashes. Potential reactivity as alkaline cements , 2003 .

[4]  Hua Xu,et al.  Ab Initio Calculations on the Five-membered Alumino-silicate Framework Rings Model: Implications for Dissolution in Alkaline Solutions , 2000, Comput. Chem..

[5]  Kenneth J. D. MacKenzie,et al.  Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate , 2003 .

[6]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .

[7]  J. A. Gadsden Infrared Spectra of Minerals and Related Inorganic Compounds , 1975 .

[8]  Rubina Chaudhary,et al.  Mechanism of geopolymerization and factors influencing its development: a review , 2007 .

[9]  J. Provis Modelling the formation of geopolymers , 2006 .

[10]  G. Johan,et al.  The physical and chemical characterisation of fly ash based geopolymers , 2000 .

[11]  J. Deventer,et al.  Erosion of geopolymers made from industrial waste , 2007 .

[12]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[13]  J. Deventer,et al.  The geopolymerisation of alumino-silicate minerals , 2000 .

[14]  Haihong Li,et al.  Synthesis and mechanical properties of metakaolinite-based geopolymer , 2005 .

[15]  T. Bakharev,et al.  Geopolymeric materials prepared using Class F fly ash and elevated temperature curing , 2005 .

[16]  J. Wastiels,et al.  Low-temperature synthesized aluminosilicate glasses , 1996 .

[17]  D. Cocke,et al.  An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc , 1993 .

[18]  K. Sagoe-Crentsil,et al.  Relationships between composition, structure and strength of inorganic polymers , 2005 .

[19]  S. Martínez-Ramírez,et al.  Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties , 2007 .

[20]  E. Merz,et al.  Immobilization of intermediate-level wastes in geopolymers , 1994 .

[21]  J.S.J. van Deventer,et al.  The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology , 2005 .

[22]  A. Fernández-Jiménez,et al.  Opc-fly ash cementitious systems: study of gel binders produced during alkaline hydration , 2007 .

[23]  V. Sirivivatnanon,et al.  Workability and strength of coarse high calcium fly ash geopolymer , 2007 .

[24]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[25]  H. Rahier,et al.  Low-temperature synthesized aluminosilicate glasses Part IV Modulated DSC study on the effect of particle size of metakaolinite on the production of inorganic polymer glasses , 2003 .

[26]  Á. Palomo,et al.  The role played by the reactive alumina content in the alkaline activation of fly ashes , 2006 .

[27]  K. MacKenzie,et al.  Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers , 2000 .

[28]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications☆ , 1997 .

[29]  K. MacKenzie,et al.  Synthesis and thermal behaviour of potassium sialate geopolymers , 2003 .

[30]  Kim S. Finnie,et al.  Influence of curing schedule on the integrity of geopolymers , 2007 .

[31]  J.S.J. van Deventer,et al.  Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers , 1999 .

[32]  Kostas Komnitsas,et al.  Geopolymerisation of low calcium ferronickel slags , 2007 .

[33]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[34]  J. Pera,et al.  Properties of Metakaolin blended cements , 1994 .

[35]  J. Deventer,et al.  Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM , 2002 .

[36]  T. Swaddle Silicate complexes of aluminum(III) in aqueous systems , 2001 .

[37]  J. Deventer,et al.  Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry , 2007 .

[38]  J.S.J. van Deventer,et al.  The effect of metal contaminants on the formation and properties of waste-based geopolymers , 1999 .

[39]  J. Wastiels,et al.  Reaction mechanism, kinetics and high temperature transformations of geopolymers , 2007 .

[40]  Anja Buchwald,et al.  What are geopolymers? Current state of research and technology, the opportunities they offer, and their significance for the precast industry , 2006 .

[41]  M. Weil,et al.  The influence of calcium content on the structure and thermal performance of fly ash based geopolymers , 2007 .

[42]  Hua Xu,et al.  The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars , 2003 .

[43]  C. Kaps,et al.  Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition , 2007 .

[44]  Á. Palomo,et al.  Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .

[45]  B. V. Rangan,et al.  Fly ash-based geopolymer concrete: study of slender reinforced columns , 2007 .

[46]  J. Phair,et al.  Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers” , 2003 .

[47]  J. Deventer,et al.  Microstructural Characterisation of Metakaolin‐Based Geopolymers , 2005 .

[48]  B. Vijaya Rangan,et al.  Studies on fly ash-based geopolymer concrete , 2008 .

[49]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics , 1999 .

[50]  J. Phair,et al.  Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers , 2001 .

[51]  J. Deventer,et al.  Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results , 2005 .

[52]  K. Sagoe-Crentsil,et al.  Relationships between composition, structure and strength of inorganic polymers , 2005 .

[53]  V. Sirivivatnanon,et al.  Kinetics of geopolymerization: Role of Al2O3 and SiO2 , 2007 .

[54]  J. Deventer,et al.  Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. , 2007, Journal of hazardous materials.

[55]  E. Vance,et al.  Geopolymers for the Immobilization of Radioactive Waste , 2004 .

[56]  Jianzhong Xu,et al.  Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers , 2006 .

[57]  Martina Minaøíková,et al.  FIXATION OF HEAVY METALS IN GEOPOLYMERIC MATERIALS BASED ON BROWN COAL FLY ASH , 2006 .

[58]  Hua Xu,et al.  Geopolymerisation of multiple minerals , 2002 .

[59]  Pavel V. Krivenko,et al.  Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix , 2007 .

[60]  J. Routbort,et al.  Solid-particle erosion of a geopolymer containing fly ash and blast-furnace slag , 2004 .

[61]  J.S.J. van Deventer,et al.  The characterisation of source materials in fly ash-based geopolymers , 2003 .

[62]  J.S.J. van Deventer,et al.  THE EFFECT OF COMPOSITION AND TEMPERATURE ON THE PROPERTIES OF FLY ASH- AND KAOLINITE -BASED GEOPOLYMERS , 2002 .

[63]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[64]  Reid F. Cooper,et al.  Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications , 2007 .

[65]  Subaer,et al.  Thermo-mechanical and microstructural characterisation of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers , 2007 .

[66]  Hua Xu Geopolymerisation of aluminosilicate minerals , 2002 .

[67]  J.S.J. van Deventer,et al.  Geopolymerisation kinetics. 2. Reaction kinetic modelling , 2007 .

[68]  PUYAM S Singh,et al.  Structural studies of geopolymers by 29Si and 27Al MAS-NMR , 2005 .

[69]  D. Cocke,et al.  An FTIR investigation of cement based solidification/stabilization systems doped with cadmium , 1992 .

[70]  J. Phair,et al.  Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers , 2002 .

[71]  Alexis T. Bell,et al.  Multinuclear NMR investigation of the formation of aluminosilicate anions , 1989 .

[72]  J. Nagy,et al.  Influence of cations on the physicochemical and structural properties of aluminosilicate gel precursors: II. Multinuclear magnetic resonance characterization , 1994 .

[73]  Zhang Yunsheng,et al.  Synthesis and heavy metal immobilization behaviors of slag based geopolymer. , 2007, Journal of hazardous materials.

[74]  C. Yip The role of calcium in geopolymerisation , 2004 .

[75]  J. Deventer,et al.  Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry , 2007 .

[76]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[77]  Akira Mikuni,et al.  Dissolution properties of some fly ash fillers applying to geopolymeric materials in alkali solution , 2007 .

[78]  J. C. Swanepoel,et al.  Utilisation of fly ash in a geopolymeric material , 2002 .

[79]  Priyan Mendis,et al.  Engineering properties of inorganic polymer concretes (IPCs) , 2007 .

[80]  J.S.J. van Deventer,et al.  Factors affecting the immobilization of metals in geopolymerized flyash , 1998 .

[81]  J. Phair,et al.  Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers , 2000 .

[82]  Grant C. Lukey,et al.  Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C , 2007 .

[83]  Raffaele Cioffi,et al.  Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue , 2003 .

[84]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[85]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[86]  M. Grutzeck Zeolites synthesized from class F fly ash and sodium aluminate slurry , 2005 .

[87]  H. Rahier,et al.  Low-temperature synthesized aluminosilicate glasses: Part III Influence of the composition of the silicate solution on production, structure and properties , 1997 .

[88]  Catherine L. Nicholson,et al.  The composition range of aluminosilicate geopolymers , 2005 .

[89]  William K. Lee Solid-gel interactions in geopolymers , 2002 .

[90]  Waltraud M. Kriven,et al.  The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers , 2007 .

[91]  Yee Loon Lee,et al.  Global constructionultimate concrete opportunities , 2005 .

[92]  J. Davidovits,et al.  Geopolymeric concretes For Environmental Protection , 1990 .

[93]  Glykeria Kakali,et al.  Dissolution of aluminosilicate minerals and by-products in alkaline media , 2007 .