Accurate parameter estimation for star formation history in galaxies using SDSS spectra

To further our knowledge of the complex physical process of galaxy formation, it is essential that we characterize the formation and evolution of large data bases of galaxies. The spectral synthesis starlight code of Cid Fernandes et al. was designed for this purpose. Results of starlight are highly dependent on the choice of input basis of simple stellar population (SSP) spectra. Speed of the code, which uses random walks through the parameter space, scales as the square of the number of the basis spectra, making it computationally necessary to choose a small number of SSPs that are coarsely sampled in age and metallicity. In this paper, we develop methods based on a diffusion map that, for the first time, choose appropriate bases of prototype SSP spectra from a large set of SSP spectra designed to approximate the continuous grid of age and metallicity of SSPs of which galaxies are truly composed. We show that our techniques achieve better accuracy of physical parameter estimation for simulated galaxies. Specifically, we show that our methods significantly decrease the age–metallicity degeneracy that is common in galaxy population synthesis methods. We analyse a sample of 3046 galaxies in Sloan Digital Sky Survey Data Release 6 and compare the parameter estimates obtained from different basis choices.

[1]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[2]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[3]  David Burstein,et al.  Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars , 1994 .

[4]  C. Leitherer,et al.  Atlas of Synthetic Ultraviolet Spectra of Massive Star Populations , 1995 .

[5]  L. Girardi,et al.  Evolutionary sequences of stellar models with new radiative opacities. VI. $Z=0.0001$ , 1996 .

[6]  D. Pelat A new method to solve stellar population synthesis problems with the use of a data base , 1997 .

[7]  D. Ottaviani,et al.  Hγ and Hδ Absorption Features in Stars and Stellar Populations , 1997 .

[8]  O. Lahav,et al.  Principal component analysis of synthetic galaxy spectra , 1998, astro-ph/9805130.

[9]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[10]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[11]  Christian Reichardt,et al.  Recovering physical parameters from galaxy spectra using MOPED , 2001, astro-ph/0101074.

[12]  L. Sodré,et al.  A probabilistic formulation for empirical population synthesis: sampling methods and tests , 2001, astro-ph/0102061.

[13]  A. Heavens,et al.  Star formation and metallicity history of the SDSS galaxy survey: unlocking the fossil record , 2002, astro-ph/0211546.

[14]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[15]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[16]  R. Pelló,et al.  STELIB: A library of stellar spectra at R 2000 ?;?? , 2003, astro-ph/0302334.

[17]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[18]  Karl Glazebrook,et al.  The Sloan Digital Sky Survey: The Cosmic Spectrum and Star Formation History , 2003 .

[19]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[20]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[21]  J. Moultaka,et al.  Constraining the solutions of an inverse method of stellar population synthesis , 2004, astro-ph/0402517.

[22]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[23]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[24]  Chile,et al.  The star formation history of Seyfert 2 nuclei , 2004 .

[25]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[26]  L. Sodré,et al.  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method , 2005 .

[27]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  I. Paris,et al.  STECMAP: STEllar Content from high-resolution galactic spectra via Maximum A Posteriori , 2005, astro-ph/0505209.

[29]  A. Heavens,et al.  The star formation histories of galaxies in the sloan digital sky survey , 2006, astro-ph/0608531.

[30]  Extracting star formation histories from medium-resolution galaxy spectra , 2005, astro-ph/0511203.

[31]  A. Heavens,et al.  Recovering galaxy star formation and metallicity histories from spectra using VESPA , 2007, 0704.0941.

[32]  J. P. Torres-Papaqui,et al.  The history of star-forming galaxies in the Sloan Digital Sky Survey , 2007, 0707.3578.

[33]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[34]  F. Hammer,et al.  Stellar population analysis on local infrared-selected galaxies , 2008, 0811.4694.

[35]  Ann B. Lee,et al.  EXPLOITING LOW-DIMENSIONAL STRUCTURE IN ASTRONOMICAL SPECTRA , 2008, 0807.2900.