Approximating Bin Packing within O(log OPT * Log Log OPT) Bins

For bin packing, the input consists of n items with sizes between 0 and 1, which have to be assigned to a minimum number of bins of size 1. The seminal Karmarkar-Karp algorithm from '82 produces a solution with at most OPT + O(log2 OPT) bins. We provide the first improvement in now 3 decades and show that one can find a solution of cost OPT + O(log OPT * log log OPT) in polynomial time. This is achieved by rounding a fractional solution to the Gilmore-Gomory LP relaxation using the Entropy Method from discrepancy theory. The result is constructive via algorithms of Bansal and Lovett-Meka.

[1]  Aleksandar Nikolov,et al.  Beck's Three Permutations Conjecture: A Counterexample and Some Consequences , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[2]  G. S. Lueker,et al.  Bin packing can be solved within 1 + ε in linear time , 1981 .

[3]  Aravind Srinivasan,et al.  Improving the discrepancy bound for sparse matrices: better approximations for sparse lattice approximation problems , 1997, SODA '97.

[4]  László Lovász,et al.  Discrepancy of Set-systems and Matrices , 1986, Eur. J. Comb..

[5]  Klaus Jansen,et al.  An OPT + 1 Algorithm for the Cutting Stock Problem with Constant Number of Object Lengths , 2010, IPCO.

[6]  Thomas Rothvoß,et al.  The entropy rounding method in approximation algorithms , 2011, SODA.

[7]  József Beck,et al.  "Integer-making" theorems , 1981, Discret. Appl. Math..

[8]  Guntram Scheithauer,et al.  Theoretical investigations on the modified integer round-up property for the one-dimensional cutting stock problem , 1997, Oper. Res. Lett..

[9]  Kurt Eisemann,et al.  The Trim Problem , 1957 .

[10]  J. Spencer Six standard deviations suffice , 1985 .

[11]  Wojciech Banaszczyk,et al.  Balancing vectors and Gaussian measures of n-dimensional convex bodies , 1998, Random Struct. Algorithms.

[12]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[13]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[14]  Friedrich Eisenbrand,et al.  Bin packing via discrepancy of permutations , 2010, SODA '11.

[15]  György Dósa,et al.  The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I) <= 11/9OPT(I) + 6/9 , 2007, ESCAPE.

[16]  K. F. Roth On irregularities of distribution, II , 1976 .

[17]  David S. Johnson,et al.  Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .

[18]  József Beck,et al.  Roth’s estimate of the discrepancy of integer sequences is nearly sharp , 1981, Comb..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[21]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[22]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[23]  Shachar Lovett,et al.  Constructive Discrepancy Minimization by Walking on the Edges , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[24]  Nikhil Bansal,et al.  Constructive Algorithms for Discrepancy Minimization , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[25]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[26]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[27]  Aravind Srinivasan,et al.  The discrepancy of permutation families , 1997 .

[28]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..