A Posteriori Error Control for Fully Discrete Crank-Nicolson Schemes

We derive residual-based a posteriori error estimates of optimal order for fully discrete approximations for linear parabolic problems. The time discretization uses the Crank--Nicolson method, and the space discretization uses finite element spaces that are allowed to change in time. The main tool in our analysis is the comparison with an appropriate reconstruction of the discrete solution, which is introduced in the present paper.

[1]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[2]  Rolf Rannacher,et al.  On the smoothing property of the crank-nicolson scheme , 1982 .

[3]  Ricardo H. Nochetto,et al.  A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..

[4]  Roy D. Williams,et al.  Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .

[5]  Erale De Lausanne SPACE-TIME ADAPTIVE ALGORITHMS FOR PARABOLIC PROBLEMS: A POSTERIORI ERROR ESTIMATES AND APPLICATION TO MICROFLUIDICS , 2009 .

[6]  Ch. Makridakis,et al.  The effect of mesh modification in time on the error control of fully discrete approximations for parabolic equations , 2013 .

[7]  Marco Picasso,et al.  An Anisotropic Error Estimator for the Crank--Nicolson Method: Application to a Parabolic Problem , 2009, SIAM J. Sci. Comput..

[8]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[9]  Willy Dörfler,et al.  A time- and spaceadaptive algorithm for the linear time-dependent Schrödinger equation , 1996 .

[10]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[11]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[12]  Ricardo H. Nochetto,et al.  Optimal order a posteriori error estimates for a class of Runge–Kutta and Galerkin methods , 2009, Numerische Mathematik.

[13]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[14]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[15]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[16]  Vidar Thomée,et al.  An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem , 1990 .

[17]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[18]  Kenneth Eriksson,et al.  Adaptive Computational Methods for Parabolic Problems , 2004 .

[19]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[20]  Charalambos Makridakis,et al.  Space and time reconstructions in a posteriori analysis of evolution problems , 2007 .