3D analysis of coupled electromagnetic and temperature fields in transverse flux induction heating system supplied by current of mains frequency

Induction heating of metal work-pieces in transverse flux magnetic field (TFIHS) belongs to modern industrial technologies. Such kind of rapid heating is especially effective in case of thin, flat strips with a thickness of the same range as the depth of electromagnetic field penetration δ. The arrangement makes it possible to achieve required parameters of the technological process at low frequency of current within the inductor, for some purposes even simply at mains frequency 50Hz. The paper presents a mathematical model of induction heating of thin brass strips. Three-dimensional model analysis of weakly-coupled electromagnetic and temperature fields is taken into consideration. Particular example of TFIHS supplied directly from the 50 Hz network is analysed. Computations are supplemented with experimental results obtained on a laboratory stand. The differences between calculation results and measurements are quite small, but, unfortunately, distribution of temperature is non-uniform. In order to obtain more uniform shape of the temperature curve, higher frequencies of the field current should be applied.