Printing colour at the optical diffraction limit.

The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of ∼100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography, and could be useful in making microimages for security, steganography, nanoscale optical filters and high-density spectrally encoded optical data storage.

[1]  Chad A. Mirkin,et al.  Polymer Pen Lithography , 2008, Science.

[2]  M. Sepaniak,et al.  Efficient disc on pillar substrates for surface enhanced Raman spectroscopy. , 2011, Chemical communications.

[3]  Hong Yee Low,et al.  Mimicking domino-like photonic nanostructures on butterfly wings. , 2009, Small.

[4]  Joel K. W. Yang,et al.  Miniaturization of grayscale images , 2011 .

[5]  Seema M. Jadhav,et al.  Dip Pen Nanolithography , 2012 .

[6]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[7]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[8]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[9]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[10]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[11]  G. Mie,et al.  Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen , 1908 .

[12]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[13]  Jörg Stettler,et al.  Optical and Digital Techniques for Information Security, Bahram Javidi (Ed.). Springer, Heidelberg (2004), (XIII/354pp., num., illustr., US$119.00, Hardcover), ISBN: 0-387-20616-7 , 2006 .

[14]  John A Rogers,et al.  Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. , 2011, Nature communications.

[15]  L. Dal Negro,et al.  Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays. , 2011, Optics express.

[16]  Qin Chen,et al.  High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. , 2010, Optics express.

[17]  Karl K. Berggren,et al.  Using high-contrast salty development of hydrogen silsesquioxane for sub-10‐nm half-pitch lithography , 2007 .

[18]  Wen-Di Li,et al.  Extraordinary Light Transmission through Opaque Thin Metal Film with Subwavelength Holes Blocked by Metal Disks References and Links , 2022 .

[19]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[20]  Risto Myllylä,et al.  Inkjet printing of light emitting quantum dots , 2009 .

[21]  Peter Spahn,et al.  3D Bulk Ordering in Macroscopic Solid Opaline Films by Edge‐Induced Rotational Shearing , 2011, Advanced materials.

[22]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[23]  Haofei Shi,et al.  Structural colors: from plasmonic to carbon nanostructures. , 2011, Small.

[24]  Tsuyoshi Nomura,et al.  Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes , 2011 .

[25]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[26]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[27]  Charles Hosten,et al.  Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. , 2011, ACS nano.

[28]  Bahram Javidi,et al.  Optical and Digital Techniques for Information Security , 2004 .

[29]  G. Si,et al.  Optically tunable plasmonic color filters , 2012 .

[30]  Zhong Lin Wang,et al.  Controlled replication of butterfly wings for achieving tunable photonic properties. , 2006, Nano letters.

[31]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[32]  Wen-Di Li,et al.  Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. , 2011, Optics express.

[33]  F. Gao,et al.  Engineering hybrid nanotube wires for high-power biofuel cells. , 2010, Nature communications.

[34]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[35]  S. Kawata,et al.  Surface-Plasmon Holography with White-Light Illumination , 2011, Science.

[36]  T. Ebbesen,et al.  Plasmonic photon sorters for spectral and polarimetric imaging , 2008 .