Spectral compressive sensing with polar interpolation

Existing approaches to compressive sensing of frequency-sparse signals focuses on signal recovery rather than spectral estimation. Furthermore, the recovery performance is limited by the coherence of the required sparsity dictionaries and by the discretization of the frequency parameter space. In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing approaches in fidelity and tolerance to noise.

[1]  Markus Rupp,et al.  Reproducible research in signal processing , 2009, IEEE Signal Processing Magazine.

[2]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..

[3]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[4]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[5]  C. Bachoc,et al.  Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .

[6]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[7]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[8]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[9]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[10]  Emmanuel J. Candès,et al.  A Nonuniform Sampler for Wideband Spectrally-Sparse Environments , 2012, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[11]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[12]  Eero P. Simoncelli,et al.  Recovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit , 2011, IEEE Transactions on Signal Processing.

[13]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[14]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[15]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[16]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[17]  Jelena Kovacevic,et al.  Reproducible research in signal processing , 2009, IEEE Signal Process. Mag..

[18]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[19]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.