Characterization of an FTLD-PDB family with the coexistence of SQSTM1 mutation and hexanucleotide (G4C2) repeat expansion in C9orf72 gene

[1]  C. Broeckhoven,et al.  The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter , 2015, Molecular Psychiatry.

[2]  F. Ginanneschi,et al.  Double trouble? Progranulin mutation and C9ORF72 repeat expansion in a case of primary non-fluent aphasia , 2014, Journal of the Neurological Sciences.

[3]  F. Jessen,et al.  Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration , 2014, Acta Neuropathologica.

[4]  Colin J. Mahoney,et al.  A pathogenic progranulin mutation and C9orf72 repeat expansion in a family with frontotemporal dementia , 2014, Neuropathology and applied neurobiology.

[5]  J. Hardy,et al.  SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. , 2013, JAMA neurology.

[6]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations , 2013, Neurology.

[7]  M. Filippi,et al.  Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation , 2013, Biological Psychiatry.

[8]  J. Belleroche,et al.  Sequestosome-1 (SQSTM1) sequence variants in ALS cases in the UK: prevalence and coexistence of SQSTM1 mutations in ALS kindred with PDB , 2013, European Journal of Human Genetics.

[9]  V. Meininger,et al.  Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology , 2013, Acta Neuropathologica.

[10]  C. Shaw,et al.  Mixed tau, TDP-43 and p62 pathology in FTLD associated with a C9ORF72 repeat expansion and p.Ala239Thr MAPT (tau) variant , 2013, Acta Neuropathologica.

[11]  F. Jessen,et al.  A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.

[12]  P. S. St George-Hyslop,et al.  SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2012, Neurology.

[13]  P. Pietrini,et al.  Screening for C9ORF72 repeat expansion in FTLD , 2012, Neurobiology of Aging.

[14]  Jacques P. Brown,et al.  Epidemiogenetic study of French families with Paget's disease of bone. , 2012, Joint, bone, spine : revue du rhumatisme.

[15]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[16]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[17]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[18]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[19]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[20]  T. Ferman,et al.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.

[21]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[22]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[23]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[24]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[25]  M. Brandi,et al.  Characterization of a Non‐UBA Domain Missense Mutation of Sequestosome 1 (SQSTM1) in Paget's Disease of Bone , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[26]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[27]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[28]  S. Ralston,et al.  Loss of Ubiquitin Binding Is a Unifying Mechanism by Which Mutations of SQSTM1 Cause Paget’s Disease of Bone , 2006, Calcified Tissue International.

[29]  G. Bjørkøy,et al.  p62/SQSTM1: A Missing Link between Protein Aggregates and the Autophagy Machinery , 2006, Autophagy.

[30]  N. Krishna,et al.  Sequestosome 1/p62 Is a Polyubiquitin Chain Binding Protein Involved in Ubiquitin Proteasome Degradation , 2004, Molecular and Cellular Biology.

[31]  K. Nakashima,et al.  Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson's disease , 2004, Brain Research.

[32]  Jacques P. Brown,et al.  Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. , 2002, American journal of human genetics.

[33]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[34]  E. Kuusisto,et al.  Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies , 2001, Neuroreport.

[35]  R. Faber,et al.  Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. , 1999, Neurology.

[36]  J. Strominger,et al.  p62, a Phosphotyrosine-independent Ligand of the SH2 Domain of p56lck, Belongs to a New Class of Ubiquitin-binding Proteins* , 1996, The Journal of Biological Chemistry.

[37]  S. Folstein,et al.  “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician , 1975 .

[38]  S. Cappa,et al.  Novel evidence of phenotypical variability in the hexanucleotide repeat expansion in chromosome 9. , 2013, Journal of Alzheimer's disease : JAD.

[39]  Kurt Zatloukal,et al.  p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. , 2002, The American journal of pathology.

[40]  K. Davis,et al.  The Alzheimer's disease assessment scale: an instrument for assessing treatment efficacy. , 1983, Psychopharmacology bulletin.