Stability analysis of distributed order of Hilfer nonlinear systems

For Hilfer derivatives of the product of two functions, we present equations and inequalities, generalizing well‐known results for Caputo and Riemann‐Liouville derivatives. Using the Laplace transformation, we introduce a generalized distributed Mittag‐Leffler‐Hilfer stability and show two results for like‐Lyapunov stability. We also extend equations and inequalities for the product of two functions of Hilfer derivatives of distributed order. Finally, we give some consequences and examples that illustrate the theory.

[1]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[2]  Michele Caputo,et al.  Mean fractional-order-derivatives differential equations and filters , 1995, ANNALI DELL UNIVERSITA DI FERRARA.

[3]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[4]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[5]  Explicit Formulae for Boundary Control of Parabolic PDEs , 2004 .

[6]  Stevan Pilipović,et al.  On a fractional distributed-order oscillator , 2005 .

[7]  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[8]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Yury F. Luchko,et al.  OPERATIONAL METHOD FOR THE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES , 2009 .

[10]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[11]  Kai Diethelm,et al.  Numerical analysis for distributed-order differential equations , 2009 .

[12]  H. M. Srivastava,et al.  Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions , 2010 .

[13]  Teodor M. Atanackovic,et al.  Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod , 2010, 1005.3379.

[14]  H. Saberi Najafi,et al.  Stability Analysis of Distributed Order Fractional Differential Equations , 2011 .

[15]  Neville J. Ford,et al.  Distributed order equations as boundary value problems , 2012, Comput. Math. Appl..

[16]  A. Ansari,et al.  Analytic study on linear systems of distributed order fractional differential equations , 2012 .

[17]  Nasser-eddine Tatar,et al.  Existence and uniqueness for a problem involving Hilfer fractional derivative , 2012, Comput. Math. Appl..

[18]  Dumitru Baleanu,et al.  Some existence results on nonlinear fractional differential equations , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[20]  Holger Kantz,et al.  Distributed-order diffusion equations and multifractality: Models and solutions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  H. Aminikhah,et al.  Stability analysis of Hilfer fractional differential systems , 2015 .

[22]  Ahmed Alsaedi,et al.  Maximum principle for certain generalized time and space fractional diffusion equations , 2015 .

[23]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[24]  Wei Jiang,et al.  Asymptotical stability of Riemann–Liouville fractional nonlinear systems , 2016, Nonlinear Dynamics.

[25]  Sandeep P. Bhairat,et al.  Existence and continuation of solutions of Hilfer fractional differential equations , 2017, 1704.02462.

[26]  M. Caputo,et al.  The Kernel of the Distributed Order Fractional Derivatives with an Application to Complex Materials , 2017 .

[27]  Guillermo Fernández-Anaya,et al.  Asymptotic stability of distributed order nonlinear dynamical systems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[28]  A. Sheikhani,et al.  Stability analysis of distributed order Hilfer-Prabhakar differential equations , 2017 .

[29]  D. Baleanu,et al.  On the existence of solutions of a three steps crisis integro-differential equation , 2018 .

[30]  M. Zaky A Legendre collocation method for distributed-order fractional optimal control problems , 2018 .

[31]  K. Jothimani,et al.  On the results of Hilfer fractional derivative with nonlocal conditions , 2018 .

[32]  Trifce Sandev,et al.  Distributed-order wave equations with composite time fractional derivative , 2018, Int. J. Comput. Math..

[33]  Mohammad Saleh Tavazoei,et al.  Stability analysis of distributed-order nonlinear dynamic systems , 2018, Int. J. Syst. Sci..

[34]  H. Srivastava,et al.  A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel , 2018, Advances in Difference Equations.

[35]  Velibor vZeli,et al.  Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law , 2017, 1703.02032.

[36]  Computable solution of fractional kinetic equations using Mathieu-type series , 2019, Advances in Difference Equations.

[37]  Xinzhi Liu,et al.  Lyapunov and external stability of Caputo fractional order switching systems , 2019, Nonlinear Analysis: Hybrid Systems.

[38]  Guotao Wang,et al.  Generalized Mittag–Leffler Stability of Hilfer Fractional Order Nonlinear Dynamic System , 2019, Mathematics.

[39]  Cong Wu,et al.  Advances in Lyapunov theory of Caputo fractional-order systems , 2019, Nonlinear Dynamics.

[40]  J. A. Tenreiro Machado,et al.  Numerical approach for a class of distributed order time fractional partial differential equations , 2019, Applied Numerical Mathematics.

[41]  Tarek M. Abed-Elhameed,et al.  Generalized Wright stability for distributed fractional-order nonlinear dynamical systems and their synchronization , 2019, Nonlinear Dynamics.

[42]  D. Baleanu,et al.  Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods , 2019, J. Appl. Math. Comput..

[43]  Asifa Tassaddiq,et al.  Analysis of differential equations involving Caputo–Fabrizio fractional operator and its applications to reaction–diffusion equations , 2019, Advances in Difference Equations.

[44]  On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation , 2019, Boundary Value Problems.

[45]  D. Baleanu,et al.  On a three step crisis integro-differential equation , 2019, Advances in Difference Equations.

[46]  Devendra Kumar,et al.  Editorial: Fractional Calculus and Its Applications in Physics , 2019, Front. Phys..

[47]  D. Baleanu,et al.  Numerical solution of some fractional dynamical systems in medicine involving non-singular kernel with vector order , 2019 .

[48]  Yuri Luchko,et al.  Desiderata for Fractional Derivatives and Integrals , 2019, Mathematics.

[49]  D. Baleanu,et al.  A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative , 2020 .

[50]  D. Baleanu,et al.  Collocation methods for terminal value problems of tempered fractional differential equations , 2020 .

[51]  D. Baleanu,et al.  Analysis of the model of HIV-1 infection of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$CD4^{+}$\end{document} , 2020, Advances in Difference Equations.

[52]  Gamal M. Mahmoud,et al.  Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control , 2020 .

[53]  S. Sarwardi,et al.  Analysis of Bogdanov–Takens bifurcations in a spatiotemporal harvested-predator and prey system with Beddington–DeAngelis-type response function , 2020 .

[54]  H. Ghaffarzadeh,et al.  Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models , 2020 .

[55]  B. Samet,et al.  A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force , 2020, Mathematical Methods in the Applied Sciences.

[56]  Hui Zhou,et al.  Uniform persistence and almost periodic solutions of a nonautonomous patch occupancy model , 2020 .

[57]  D. Baleanu,et al.  Analyzing transient response of the parallel RCL circuit by using the Caputo–Fabrizio fractional derivative , 2020 .

[58]  Dumitru Baleanu,et al.  New fractional signal smoothing equations with short memory and variable order , 2020 .

[59]  Sansit Patnaik,et al.  Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators , 2020 .

[60]  K. Nisar,et al.  New results on nonlocal functional integro-differential equations via Hilfer fractional derivative , 2020 .

[61]  K. Nisar,et al.  Caputo–Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology , 2020 .

[62]  M. Samei,et al.  On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation , 2020, Boundary Value Problems.

[63]  K. Jothimani,et al.  Existence results of Hilfer integro-differential equations with fractional order , 2020, Discrete & Continuous Dynamical Systems - S.

[64]  Dumitru Baleanu,et al.  A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions , 2020 .