Effect of Indium Composition on the Microstructural Properties and Performance of InGaN/GaN MQWs Solar Cells
暂无分享,去创建一个
Lu Li | Heng-Sheng Shan | Xiao-Ya Li | Bin Chen | Shu-Fang Ma | Bing-She Xu | Shufang Ma | Bin Chen | Lu Li | Hengsheng Shan | Xiaoya Li | Bing Xu
[1] Umesh K. Mishra,et al. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .
[2] Y. Hao,et al. Proton irradiation effects on HVPE GaN , 2012 .
[3] T. Kozawa,et al. THERMAL STRESS IN GAN EPITAXIAL LAYERS GROWN ON SAPPHIRE SUBSTRATES , 1995 .
[4] Lin-An Yang,et al. Yellow luminescence of polar and nonpolar GaN nanowires on r-plane sapphire by metal organic chemical vapor deposition. , 2013, Nano letters.
[5] Wael Z. Tawfik,et al. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes , 2014 .
[6] Y. Hao,et al. Influence of stress on the optical properties of double InGaN/GaN multiple quantum wells , 2018 .
[7] H. Strunk,et al. Optoelectronic properties of GaN epilayers in the region of yellow luminescence , 2006 .
[8] Y. Hao,et al. Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping , 2019, IEEE Transactions on Electron Devices.
[10] J. Chyi,et al. Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells , 2000 .
[11] Fernando Ponce,et al. Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence , 2001 .
[12] Weiqi Wang,et al. Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN , 1999 .
[13] L. Ying,et al. Abnormal staircase-like I-V curve in InGaN quantum well solar cells , 2018 .
[14] Bin Chen,et al. The performance enhancement of an InGaN/GaN multiple-quantum-well solar cell by superlattice structure , 2017 .
[15] Soo Jin Chua,et al. Assignment of deep levels causing yellow luminescence in GaN , 2004 .
[16] Lars Samuelson,et al. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence , 2015 .
[17] Hong Chen,et al. Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN∕GaN quantum wells , 2007 .
[18] James S. Speck,et al. High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .
[19] Motoaki Iwaya,et al. GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate , 2011 .
[20] Jun Ho Son,et al. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes. , 2010, Optics express.
[21] Chih-Chung Yang,et al. Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells , 2000 .
[22] S. Denbaars,et al. Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency , 2017 .
[23] L. Sang,et al. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties , 2015 .
[24] Christopher M. Proctor,et al. Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells , 2015 .
[25] J. Shim,et al. Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells , 2013 .
[26] Ke Wang,et al. Leak path passivation by in situ Al-N for InGaN solar cells operating at wavelengths up to 570 nm , 2016 .
[27] David P. Bour,et al. Spatial distribution of the luminescence in GaN thin films , 1996 .
[28] N. El-Masry,et al. Strain-balanced InGaN/GaN multiple quantum wells , 2014 .
[29] M. O. Vassell,et al. Multibarrier tunneling in Ga1−xAlxAs/GaAs heterostructures , 1983 .
[30] V. Shutthanandan,et al. Lattice damage and compositional changes in Xe ion irradiated InxGa1-xN (x = 0.32−1.0) single crystals , 2016 .