Parameter Identification Near Periodic Orbits of Hybrid Dynamical Systems

We present a novel identification framework that enables the use of first-order methods when estimating model parameters near a periodic orbit of a hybrid dynamical system. The proposed method reduces the space of initial conditions to a smooth manifold that contains the hybrid dynamics near the periodic orbit while maintaining the parametric dependence of the original hybrid model. First-order methods apply on this subsystem to minimize average prediction error, thus identifying parameters for the original hybrid system. We implement the technique and provide simulation results for a hybrid model relevant to terrestrial locomotion.

[1]  K. Wedeward,et al.  Parameter estimation in delayed-switching hybrid dynamical systems , 2009, 2009 IEEE Power & Energy Society General Meeting.

[2]  Jitendra K. Tugnait,et al.  Detection and estimation for abruptly changing systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  Manfred Morari,et al.  Identification of piecewise affine and hybrid systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[4]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[5]  P. Holmes,et al.  How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data? , 2008, Journal of theoretical biology.

[6]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[7]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[8]  René Vidal,et al.  Identification of Hybrid Systems: A Tutorial , 2007, Eur. J. Control.

[9]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[10]  Natal A. W. van Riel,et al.  ONE-STEP AHEAD PREDICTION FOR PARAMETER ESTIMATION IN PHYSIOLOGICAL HYBRID MODELS , 2005 .

[11]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[12]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[13]  S. Shankar Sastry,et al.  Numerical integration of hybrid dynamical systems via domain relaxation , 2011, IEEE Conference on Decision and Control and European Control Conference.

[14]  N. V. van Riel,et al.  beta-Adrenergic activation reveals impaired cardiac calcium handling at early stage of diabetes. , 2005, Life sciences.

[15]  John Lygeros,et al.  Subtilin Production by Bacillus Subtilis: Stochastic Hybrid Models and Parameter Identification , 2008, IEEE Transactions on Automatic Control.

[16]  Ian A. Hiskens,et al.  Trajectory Sensitivity Analysis of Hybrid Systems , 2000 .

[17]  J. Guckenheimer,et al.  Periodic Orbits of Hybrid Systems and Parameter Estimation via AD , 2006 .

[18]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[19]  H. Benjamin Brown,et al.  Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot , 2000, ISER.

[20]  Peter J.T. Verheijen,et al.  Hybrid System Modeling and Identification of Cell Biology Systems: Perspectives and Challenges , 2009 .

[21]  Inseok Hwang,et al.  Inference Methods for Autonomous Stochastic Linear Hybrid Systems , 2004, HSCC.

[22]  S. Shankar Sastry,et al.  Dimension reduction near periodic orbits of hybrid systems , 2011, IEEE Conference on Decision and Control and European Control Conference.