The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking

This paper elaborates the Accurate Continuous-Discrete Extended Kalman Filter grounded in an ODE solver with global error control and its comparison to the Continuous-Discrete Cubature and Unscented Kalman Filters. All these state estimators are examined in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn. The latter is considered to be a challenging one for testing nonlinear filtering algorithms. Our numerical results show that all the methods can be used for practical target tracking, but the Accurate Continuous-Discrete Extended Kalman Filter is more flexible and robust. It treats successfully (and without any manual tuning) the air traffic control scenario for various initial data and for a range of sampling times.

[1]  Arkadi I. Merkulov,et al.  Asymptotic error estimate for general Newton-type methods and its application to differential equations , 2007 .

[2]  Doreen Meier,et al.  Introduction To Stochastic Control Theory , 2016 .

[3]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[4]  M. V. Kulikova,et al.  Accurate Numerical Implementation of the Continuous-Discrete Extended Kalman Filter , 2014, IEEE Transactions on Automatic Control.

[5]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[6]  Nicholas J. Higham,et al.  Matlab guide, Second Edition , 2005 .

[7]  Gennady Yu. Kulikov,et al.  Cheap global error estimation in some Runge–Kutta pairs , 2013 .

[8]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[9]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[10]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[11]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[12]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[13]  Thomas Mazzoni,et al.  Computational aspects of continuous–discrete extended Kalman-filtering , 2008, Comput. Stat..

[14]  G. Kulikov,et al.  Adaptive nested implicit Runge--Kutta formulas of Gauss type , 2009 .

[15]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[16]  H. Musoff,et al.  Unscented Kalman Filter , 2015 .

[17]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[18]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[19]  Rüdiger Weiner,et al.  Global error estimation and control in linearly-implicit parallel two-step peer W-methods , 2011, J. Comput. Appl. Math..

[20]  F. Lewis Optimal Estimation: With an Introduction to Stochastic Control Theory , 1986 .

[21]  Simon Haykin,et al.  Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations , 2010, IEEE Transactions on Signal Processing.